dc.contributor | 應數系 | - |
dc.creator (作者) | 班榮超 | - |
dc.creator (作者) | Ban, Jung-Chao | - |
dc.creator (作者) | Chang, Chih-Hung | - |
dc.date (日期) | 2011-05 | - |
dc.date.accessioned | 22-六月-2020 13:41:12 (UTC+8) | - |
dc.date.available | 22-六月-2020 13:41:12 (UTC+8) | - |
dc.date.issued (上傳時間) | 22-六月-2020 13:41:12 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/130193 | - |
dc.description.abstract (摘要) | Letting π: X → Y be a one-block factor map and Φ be an almostadditive potential function on X, we prove that if π has diamond, then the pressure P(X, Φ) is strictly larger than P(Y, πΦ). Furthermore, if we define the ratio ρ(Φ) = P(X, Φ)/P(Y, πΦ), then ρ(Φ) > 1 and it can be proved that there exists a family of pairs {(πi,Xi)}ki=1 such that πi: Xi → Y is a factor map between Xi and Y, Xi ⊆ X is a subshift of finite type such that ρ(πi,Φ{pipe}Xi) (the ratio of the pressure function for P(Xi,Φ{pipe}Xi) and P(Y, πΦ)) is dense in [1, ρ(Φ)]. This extends the result of Quas and Trow for the entropy case. | - |
dc.format.extent | 230179 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.relation (關聯) | Proceedings of the American Mathematical Society, Vol.139, No.11, pp.3985-3997 | - |
dc.subject (關鍵詞) | Sofic shift | - |
dc.title (題名) | Factor map, diamond and density of pressure functions | - |
dc.type (資料類型) | article | - |
dc.identifier.doi (DOI) | 10.1090/S0002-9939-2011-10803-7 | - |
dc.doi.uri (DOI) | http://dx.doi.org/10.1090/S0002-9939-2011-10803-7 | - |