dc.contributor.advisor | 蔡政憲 | zh_TW |
dc.contributor.advisor | Tsai, Jason | en_US |
dc.contributor.author (作者) | 卓尚緯 | zh_TW |
dc.contributor.author (作者) | Cho, Stewart | en_US |
dc.creator (作者) | 卓尚緯 | zh_TW |
dc.creator (作者) | Cho, Stewart | en_US |
dc.date (日期) | 2020 | en_US |
dc.date.accessioned | 3-八月-2020 17:45:49 (UTC+8) | - |
dc.date.available | 3-八月-2020 17:45:49 (UTC+8) | - |
dc.date.issued (上傳時間) | 3-八月-2020 17:45:49 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0106933028 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/131038 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 國際經營管理英語碩士學位學程(IMBA) | zh_TW |
dc.description (描述) | 106933028 | zh_TW |
dc.description.abstract (摘要) | While improving the operational efficiency of a casualty insurance department in the property insurance industry has been extensively investigated, increasing the performance and efficiency of an underwriting department in a life insurance company is relatively unexplored. The paper studies the improvement of efficiency of the casualty insurance department. The research focuses on how a non-life insurance company should change in order to improve the efficiency of its casualty insurance department from five different factors, which are artificial intelligence (AI) and robots, core systems, internal business processes and delegation of authority policy, employee training, and distribution channels and marketing strategies. Interview information from the participants is categorized in order to ascertain the respondent’s opinions are presented correctly. The findings suggest that property insurance companies could consider using AI or robots, introducing a new core system, giving a higher limit of authorities or delegation of authority for its branches to underwrite more insurance products, and providing training that employees needed to handle daily business routines. These findings have implications for non-life insurance companies to have plans or intend to evaluate what things they should do to increase performance and competitiveness from different perspectives. | en_US |
dc.description.tableofcontents | 1. Introduction 11.1. Research Background Information 11.2. Purpose of Research 21.3. Research Questions 31.4. Overview of the Paper 32. Method 42.1. Participants 42.2. Questionnaire 52.3. Data Collection Procedure 52.4. Analyses of Interview Results 63. Background Information of the Research Companies 73.1. Overview of the X Company 73.2. Structure and Responsibility of the Casualty Insurance Department in the X Company 83.3. Current Issues about Operations in Casualty Insurance Department of the X Company 84. The Five Factors to Improve the Operational Efficiency of the Casualty Insurance Department 114.1. Artificial Intelligence and Robot 114.1.1. Overview of Artificial Intelligence and Robot in Insurance Industry 114.1.2. Applications of Artificial Intelligence and Robot 134.1.3. Possible Outcomes of Using AI or Robot in Insurance Industry 154.1.4. Robotic Process Automation (RPA) 194.2. Core Systems 234.2.1. Possible Business Drivers of Core Systems in Insurance Industry 244.2.2. Possible Benefits of Legacy Systems Modernization 264.2.3. Core Systems’ Future Applications 294.3. Internal Business Processes and Delegation of Authority Policy 304.3.1. The Purpose of Establishing the Delegation of Authority Policy 304.3.2. The Purpose of Underwriting in the Insurance Industry 314.3.3. Operational Policy, Underwriting Policy, and Underwriting Guidelines in the Insurance Industry 324.3.4. Underwriting Performance Evaluation Metrics 334.4. Employee Training 344.4.1. The Purpose of Employee Training 344.4.2. Types of Employee Training 354.4.3. Possible Benefits of Providing Employee Training 394.4.4. Suggested Training for an Underwriter 414.5. Distribution Channels and Marketing Strategies 434.5.1. Overview of Distribution Channels in Non-Life Insurance Market 434.5.2. Marketing Strategies in the Non-Life Insurance Industry 454.5.3. Evaluation of Marketing Performance 465. Research Results and Analysis 485.1. Research Design 485.2. Research Findings 496. Conclusions 556.1. Conclusions 556.2. Recommendations 566.3. Limitations of the Study 586.4. Suggestions for Future Research 59References 60Appendix 64 | zh_TW |
dc.format.extent | 1161100 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0106933028 | en_US |
dc.subject (關鍵詞) | 運作效率 | zh_TW |
dc.subject (關鍵詞) | 意外險 | zh_TW |
dc.subject (關鍵詞) | 人工智慧 | zh_TW |
dc.subject (關鍵詞) | 核心系統 | zh_TW |
dc.subject (關鍵詞) | 員工訓練 | zh_TW |
dc.subject (關鍵詞) | Operational efficiency | en_US |
dc.subject (關鍵詞) | Casualty insurance | en_US |
dc.subject (關鍵詞) | Artificial Intelligence | en_US |
dc.subject (關鍵詞) | Core system | en_US |
dc.subject (關鍵詞) | Employee training | en_US |
dc.title (題名) | 提升意外保險部門之營運效率研究 | zh_TW |
dc.title (題名) | IMPROVING OPERATIONAL EFFICIENCY OF A CASUALTY INSURANCE DEPARTMENT | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | Accenture. (2005). Driving high performance in government: Maximizing the value of public-sector shared services. Retrieved from https://www.njleg.state.nj.us/PropertyTaxSession/OPI/accenture.pdfAon Public Limited Company. (2019). Global risk management survey. Survey Report. Retrieved from https://www.aon.com/getmedia/8d5ad510-1ae5-4d2b-a3d0-e241181da882/2019-Aon-Global-Risk-Management-Survey-Report.aspxFinancial Stability Board. (2017, 11 1). Artificial intelligence and machine learning in financial services - Market developments and financial stability implications. Retrieved from https://www.fsb.org/wp-content/uploads/P011117.pdfHigh-Level Expert Group on Artificial Intelligence. (2019, 4 8). Ethics guidelines for trustworthy AI. Brussels: European Commission. Retrieved from https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60419Institute for Robotic Process Automation and Artificial Intelligence. (2019). Definition and benefits. Retrieved from Institute for Robotic Process Automation and Artificial Intelligence: https://irpaai.com/definition-and-benefits/Krish, K., Lansing, J., Münstermann, B., Olesen, P. B., & Vogelgesang, U. (2019, 11 4). IT modernization in insurance: Three paths to transformation. Retrieved from McKinsey & Company: https://www.mckinsey.com/industries/financial-services/our-insights/it-modernization-in-insurance-three-paths-to-transformation#Lacity, M., & Willcocks, L. (2016). Robotic process automation: The next transformation lever for shared services. The Outsourcing Unit (OU). Retrieved from http://www.umsl.edu/~lacitym/OUWP1601.pdfOn-the-job training. (2020, 05 14). Retrieved from In Wikipedia: https://en.wikipedia.org/wiki/On-the-job_trainingOrganisation for Economic Co-operation and Development. (2017). Technology and innovation in the insurance sector. Organisation for Economic Co-operation and Development. Retrieved from https://www.oecd.org/pensions/Technology-and-innovation-in-the-insurance-sector.pdfOrganisation for Economic Co-operation and Development. (2020). The impact of big data and artificial intelligence (AI) in the insurance sector. Organisation for Economic Co-operation and Development. Retrieved from www.oecd.org/finance/Impact-Big-Data-AI-in-the-Insurance-Sector.htmOsinubi, F. (2018). Looking into the future: Leveraging the power of AI and robotics. PricewaterhouseCoopers (PwC). Retrieved from https://www.pwc.com/ng/en/assets/pdf/leveraging-power-ai-and-robotics.pdf李靜宜(2020年01月03日)。IFRS 17即將上路,臺灣本土廠商推微服務架構的保險資訊系統轉換解決方案。iThome。取自https://www.ithome.com.tw/news/135167金融監督管理委員會(2019年03月28日)。上市(櫃)公司近期應遵循之新規範及相關措施。金融監督管理委員會。取自 https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=201903280001&toolsflag=Y&dtable=News金融監督管理委員會保險局(2020年03月30日)。109年1月保險市場重要指標。取自https://www.ib.gov.tw/uploaddowndoc?file=statistics/202003301316550.pdf&filedisplay=202001%E6%8C%87%E6%A8%990305_%E5%90%AB%E5%85%AC%E5%BC%8F%E5%8A%A0%E9%A0%81_%E6%AD%A3%E5%BC%8F_final%E5%80%BC.pdf&flag=doc洪榮昭(1991)。人力資源發展:企業培養人才之道。臺北市:師大書苑。財團法人保險事業發展中心(2020年05月17日)。保險財務業務統計。取自 https://www.tii.org.tw/tii/information/information1/000001.html財團法人資訊工業策進會(2020)。108年度「人工智慧(AI)技術導入對金融服務業之勞動法制影響調查」委託研究。勞動部委託研究(編號:108-MOL-010303)。勞動部。楊芳苓、曾耀民(2020年3月18日)。農業保險法草案。立法院(編號:B01498),未出版。取自https://www.ly.gov.tw/Pages/Detail.aspx?nodeid=5249&pid=192711楊純瑜(2012)。激勵因素、學習型組織、教育訓練、個人生涯規劃與工作績效關聯性之研究-以A保險公司員工為例。國立高雄應用科技大學企業管理系碩士在職專班碩士論文,(頁 49)。高雄市。取自https://hdl.handle.net/11296/nb68cc楊絡懸(2020年05月08日)。「壽險大魔王」IFRS 17延至2023年!台灣預計2026年1月上路 保險業還有6年時間準備。ETtoday新聞雲。取自https://www.ettoday.net/news/20200318/1670927.htm資誠聯合會計師事務所(2020)。兆豐產物保險股份有限公司財務報告暨會計師查核報告民國108 年度及107 年度。臺北市。取自 https://ins-info.ib.gov.tw/customer/Info2-8.aspx?UID=03090217廖述源(2007)。財產保險經營。臺北市:財團法人保險事業發展中心。 | zh_TW |
dc.identifier.doi (DOI) | 10.6814/NCCU202000750 | en_US |