學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 鉍-銻-碲熱電薄膜製備及其熱電轉換應用研究
Fabrication of Bi-Sb-Te Thermoelectric Thin Film and Its Thermoelectric Application
作者 劉威廷
Liou, Wei-Ting
貢獻者 陳洋元
Chen, Yang-Yuan
劉威廷
Liou, Wei-Ting
關鍵詞 能源
熱電材料
Energy
Thermoelectric Material
日期 2020
上傳時間 2-九月-2020 14:09:17 (UTC+8)
參考文獻 [1] Z. Wang et al, "Realization of a wearable miniaturized thermoelectric generator for human body applications," Sensors and Actuators A, vol. 156, pp. 95–102, November 2009.
[2] S.B. Schaevitz et al, "A Combustion-Based MEMS Thermoelectric Power
Generator," Transducers ’01 Eurosensors XV , Heidelberg, 2001.
[3] 國立嘉義大學 ,“電子束蒸鍍系統”國立嘉義大學貴重儀器中心 , 2008. [線上].
[4] P.H. Holloway, "Gold/chromium metallizations for electronic devices," Gold Bulletin, vol. 12, no. 3, pp. 99–106, September 1979.
[5] T.O. Akinyemi and O.E. Simolowo, "A Mobile Tropical Cooling System Design Using a Thermoelectric Module," TRANSACTIONS ON MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE, vol. 5, no. 3, pp. 1-12, June 2017.
[6] 黃振東、徐振庭 ,“熱電材料”科學發展 , 編號 486, pp. 48-53, June 2013.
[7] 李世光 ,“經濟部施政重點”2016.
[8] 凌力爾特公司 ,“採用超低電壓轉換器改善從熱電能源的能量收集”. 2013.
[9] Y.H. Choi et al, “An electrodynamic preconcentrator integrated thermoelectric
biosensor chip for continuous monitoring of biochemical process,” J. Micromech. Microeng., pp. 1-13, March 2012.
[10] K. Technologies, 智慧型手錶功耗分析全記錄 , Keysight Technologies, 2015.
[11] D. Champier et al, "Study of a TE (thermoelectric) generator incorporated in a
multifunction wood stove," Energy, vol. 36, pp. 1518-1526, January 2011.
[12] L.E. Bell, "Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems," Sciece, vol. 321, pp. 1457-1461, September 2008.
[13] 朱旭山 ,“熱電材料與元件之原理與應用”電子與材料雜誌 , 編號 22, pp. 78-89, 2004.
[14] M. Enrique, “Thermoelectric Materials: Advances and Applications,” Research
Gate, May 2015.
[15] J.C. Hsiao et al, "Anisotropic thermal conductivity of sputtered Bi0.5Sb1.5Te3
films after current-assisted thermal treatment," Thin Solid Films, no. 645, pp. 93-
96, January 2018.
[16] A.R.M. Siddique et al, "A review of the state of the science on wearable
thermoelectric power generators(TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, no. 73, pp. 730-744, February 2017.
[17] R. Bjørk et al, "Analysis of the internal heat losses in a thermoelectric generator,"
International Journal of Thermal Sciences, no. 85, pp. 12-20, July 2014.
[18] S.B. Schaevitz, “A MEMS Thermoelectric Generator,” Thesis, September 2000.
[19] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature Materials, vol. 7, pp. 105-114, February 2008.
[20] S. Liu et al, "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, vol. 225, pp. 600-610, May 2018.
[21] G. J. Snyder et al, "Thermoelectric microdevice fabricated by a MEMS-like
electrochemical process," Nature Materials, vol. 2, pp. 528-531, August 2003.
[22] 蔡信行、孫光中 , 奈米科技導論-基本原理及應用 , 台北: 新文京開發出版股份有限公司 , 2004.
[23] A. F. Conde et al, "Study of the electronic transport in the semiconducting
Bi0.5Sb1.5Te3 and Bi1.5Sb0.5Te3 alloys," Journal of Materials Science: Materials in Electronics, vol. 29, no. 18, pp. 15658-15663, September 2018.
[24] X. Yan et al, "Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi2Te2.7Se0.3," Nano Lett., vol. 10, pp. 3373-3378, July 2010.
[25] I. Chowdhury et al, "On-chip cooling by superlattice-based thin-film
thermoelectrics," Nature NanoTechnology, vol. 4, pp. 235-238, April 2009.
[26] J.P. Carmo et al, "Thermoelectric Microconverter for Energy Harvesting Systems," IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 861-867, April 2010.
[27] W. Zhang et al, "A High Power Density Micro-Thermoelectric Generator Fabricated by an Integrated Bottom-Up Approach," Journal of MicroelectroMechanical Systems, vol. 25, no. 4, pp. 744-749, August 2016.
[28] L.M. Goncalves et al, "Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications," Thin Solid Films, vol. 519, pp. 4152-4157, March 2011.
[29] A. Soni et al, "Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered Bi2Te2.7Se0.3 Nanoplatelet Composites," Nano Lett., vol. 12, p. 4305−4310, July 2012.
[30] M. Mizoshiri et al, "Lift-off patterning of thermoelectric thick films deposited by a thermally assisted sputtering method," Appl. Phys. Express, vol. 7, pp. 1-4, April 2014.
[31] C. Schumacher et al, "Optimizations of Pulsed Plated p and n-type Bi2Te3-Based Ternary Compounds by Annealing in Different Ambient Atmospheres," Adv. Energy Mater., vol. 3, pp. 95-104, August 2012.
[32] H.J. Lin et al, "Effect of Annealing Temperature on the Thermoelectric Properties of the Bi0.5Sb1.5Te3 Thin Films Prepared by Radio-Frequency Sputtering," Metallurgical and Materials Transactions A, vol. 44, no 5, pp. 2339-2345, January 2013.
[33] M. Mizoshiri et al, "The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules," J. Micromech. Microeng., vol. 23, no. 11, pp. 1-9, October 2013.
[34] Z.B. Tang et al, "A research on thermoelectric generator`s electrical performance
under temperature mismatch conditions for automotive waste heat recovery
system," Case Studies in Thermal Engineering, vol. 5, p. 143–150, March 2015.
[35] W.S. Liu et al, "Understanding of the contact of nanostructured thermoelectric n
type Bi2Te2.7Se0.3 legs for power generation applications," J. Mater. Chem. A, vol. 1, p. 13093–13100, September 2013.
[36] R. Ditchfield et al, "Semiconductor surface diffusion: Effects of low-energy ion
bombardment," Physical Review B, vol. 63, pp. 1253171-9, March 2001.
[37] R. Ditchfield and E.G. Seebauer, "Direct Measurement of Ion-Influenced Surface
Diffusion," Physical Review Letters, vol. 82, no. 6, pp. 1185-1188, February 1999.
[38] T.C. Harman et al, "Quantum Dot Superlattice Thermoelectric Materials and
Devices," Science, vol. 297, pp. 2229-2232, Septempber 2002.
[39] J.P. Carmo et al, "Thermoelectric generator and solid-state battery for stand-alone microsystems," J. Micromech. Microeng, vol. 20, pp. 1-8, July 2010.
[40] H. Böttner et al, "New Thermoelectric Components Using Microsystem Technologies," Journal of Microelectrictromechanical System, vol. 13, no. 3, pp. 414-420, June 2004.
[41] I. Savani et al, "Harnessing thermoelectric power from transient heat sources: Waste heat recovery from silicon production," Energy Conversion and Management, vol. 138, p. 171–182, February 2017.
描述 碩士
國立政治大學
應用物理研究所
107755011
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107755011
資料類型 thesis
dc.contributor.advisor 陳洋元zh_TW
dc.contributor.advisor Chen, Yang-Yuanen_US
dc.contributor.author (作者) 劉威廷zh_TW
dc.contributor.author (作者) Liou, Wei-Tingen_US
dc.creator (作者) 劉威廷zh_TW
dc.creator (作者) Liou, Wei-Tingen_US
dc.date (日期) 2020en_US
dc.date.accessioned 2-九月-2020 14:09:17 (UTC+8)-
dc.date.available 2-九月-2020 14:09:17 (UTC+8)-
dc.date.issued (上傳時間) 2-九月-2020 14:09:17 (UTC+8)-
dc.identifier (其他 識別碼) G0107755011en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/131979-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 107755011zh_TW
dc.description.tableofcontents Chapter 1 緒論 1
1-1 研究背景與動機 1
1-2 熱電元件概述 3
1-3 熱電元件未來發展 7
Chapter 2 文獻回顧與理論基礎 9
2-1 熱電的發展 9
2-2 席貝克效應(Seebeck Effect) 10
2-3 帕爾帖效應(Peltier Effect) 11
2-4 湯姆森效應(Thomson Effect) 12
2-5 熱傳導率(Thermal Conductivity) 13
2-5-1 電子熱傳導影響 14
2-5-2 聲子熱傳導影響 15
2-6 電導率(Electrical Conductivity) 17
2-7 席貝克係數(Seebeck Coefficient) 19
2-8 熱電優值(Rigure of Merit) 22
Chapter 3熱電晶片基本構造與製程 24
3-1薄膜型微結構熱電晶片基本架構 24
3-2 實驗儀器介紹 26
3-2-1封管系統 26
3-2-2純化爐 27
3-2-3高溫旋轉爐 28
3-2-4高能球磨機 29
3-2-5火花電漿燒結系統(Spark Plasma Sintering System) 30
3-2-6精密鑽石切割機 31
3-2-7電子束熱蒸鍍系統(E-beam Evaporator) 32
3-2-8射頻磁控濺鍍系統(Radio Frequency Magnetron Sputter) 33
3-2-9反應式離子蝕刻機(Reactive Ion Etching) 36
3-2-10超音波震洗機(Elmasonic-P) 37
3-2-11加熱攪拌器(Stirrers/Hot Plate) 38
3-2-12光阻旋塗機(Photo Resist Spinner) 39
3-2-13加熱板(Hot Plate) 39
3-2-14黃光微影曝光機(Mask Aligner) 40
3-3 量測儀器介紹 41
3-3-1場發射掃描式電子顯微鏡 41
3-3-2膜厚量測儀 42
3-3-3熱電量測系統(ZEM-3) 43
3-4 熱電半導體濺鍍靶材製作 45
3-4-1 純化元素 45
3-4-2 球磨並壓製靶材 47
3-4-3 退靶與黏製靶材 48
3-5 熱電微結構晶片製程 49
3-5-1 清洗4〞基板 49
3-5-2 黏貼金屬遮罩 49
3-5-3 下電極製作 51
3-5-4 切割成元件大小 53
3-5-5 旋塗光阻並定義圖形 54
3-5-6 沉積Cr、P型半導體熱電材料 58
3-5-7 沉積N型半導體熱電材料 60
3-5-8 舉離(lift-off) 60
3-5-9 塗佈S1813光阻 61
3-5-10 補鍍P薄膜材料 61
3-5-11 補鍍N薄膜材料 61
3-5-12 熱處理 62
3-5-13 蒸鍍、濺鍍上電極 63
Chapter 4 實驗結果與討論 64
4-1 薄膜沉積 64
4-2 不同遮罩大小對薄膜沉積影響 66
4-3 晶片lift-off 71
4-4 蒸鍍上電極與EMF、Seebeck測試(室溫環境) 76
4-5 SEM與OM量測 110
Chapter 5 結論 115
參考文獻 117
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107755011en_US
dc.subject (關鍵詞) 能源zh_TW
dc.subject (關鍵詞) 熱電材料zh_TW
dc.subject (關鍵詞) Energyen_US
dc.subject (關鍵詞) Thermoelectric Materialen_US
dc.title (題名) 鉍-銻-碲熱電薄膜製備及其熱電轉換應用研究zh_TW
dc.title (題名) Fabrication of Bi-Sb-Te Thermoelectric Thin Film and Its Thermoelectric Applicationen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Z. Wang et al, "Realization of a wearable miniaturized thermoelectric generator for human body applications," Sensors and Actuators A, vol. 156, pp. 95–102, November 2009.
[2] S.B. Schaevitz et al, "A Combustion-Based MEMS Thermoelectric Power
Generator," Transducers ’01 Eurosensors XV , Heidelberg, 2001.
[3] 國立嘉義大學 ,“電子束蒸鍍系統”國立嘉義大學貴重儀器中心 , 2008. [線上].
[4] P.H. Holloway, "Gold/chromium metallizations for electronic devices," Gold Bulletin, vol. 12, no. 3, pp. 99–106, September 1979.
[5] T.O. Akinyemi and O.E. Simolowo, "A Mobile Tropical Cooling System Design Using a Thermoelectric Module," TRANSACTIONS ON MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE, vol. 5, no. 3, pp. 1-12, June 2017.
[6] 黃振東、徐振庭 ,“熱電材料”科學發展 , 編號 486, pp. 48-53, June 2013.
[7] 李世光 ,“經濟部施政重點”2016.
[8] 凌力爾特公司 ,“採用超低電壓轉換器改善從熱電能源的能量收集”. 2013.
[9] Y.H. Choi et al, “An electrodynamic preconcentrator integrated thermoelectric
biosensor chip for continuous monitoring of biochemical process,” J. Micromech. Microeng., pp. 1-13, March 2012.
[10] K. Technologies, 智慧型手錶功耗分析全記錄 , Keysight Technologies, 2015.
[11] D. Champier et al, "Study of a TE (thermoelectric) generator incorporated in a
multifunction wood stove," Energy, vol. 36, pp. 1518-1526, January 2011.
[12] L.E. Bell, "Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems," Sciece, vol. 321, pp. 1457-1461, September 2008.
[13] 朱旭山 ,“熱電材料與元件之原理與應用”電子與材料雜誌 , 編號 22, pp. 78-89, 2004.
[14] M. Enrique, “Thermoelectric Materials: Advances and Applications,” Research
Gate, May 2015.
[15] J.C. Hsiao et al, "Anisotropic thermal conductivity of sputtered Bi0.5Sb1.5Te3
films after current-assisted thermal treatment," Thin Solid Films, no. 645, pp. 93-
96, January 2018.
[16] A.R.M. Siddique et al, "A review of the state of the science on wearable
thermoelectric power generators(TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, no. 73, pp. 730-744, February 2017.
[17] R. Bjørk et al, "Analysis of the internal heat losses in a thermoelectric generator,"
International Journal of Thermal Sciences, no. 85, pp. 12-20, July 2014.
[18] S.B. Schaevitz, “A MEMS Thermoelectric Generator,” Thesis, September 2000.
[19] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature Materials, vol. 7, pp. 105-114, February 2008.
[20] S. Liu et al, "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, vol. 225, pp. 600-610, May 2018.
[21] G. J. Snyder et al, "Thermoelectric microdevice fabricated by a MEMS-like
electrochemical process," Nature Materials, vol. 2, pp. 528-531, August 2003.
[22] 蔡信行、孫光中 , 奈米科技導論-基本原理及應用 , 台北: 新文京開發出版股份有限公司 , 2004.
[23] A. F. Conde et al, "Study of the electronic transport in the semiconducting
Bi0.5Sb1.5Te3 and Bi1.5Sb0.5Te3 alloys," Journal of Materials Science: Materials in Electronics, vol. 29, no. 18, pp. 15658-15663, September 2018.
[24] X. Yan et al, "Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi2Te2.7Se0.3," Nano Lett., vol. 10, pp. 3373-3378, July 2010.
[25] I. Chowdhury et al, "On-chip cooling by superlattice-based thin-film
thermoelectrics," Nature NanoTechnology, vol. 4, pp. 235-238, April 2009.
[26] J.P. Carmo et al, "Thermoelectric Microconverter for Energy Harvesting Systems," IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 861-867, April 2010.
[27] W. Zhang et al, "A High Power Density Micro-Thermoelectric Generator Fabricated by an Integrated Bottom-Up Approach," Journal of MicroelectroMechanical Systems, vol. 25, no. 4, pp. 744-749, August 2016.
[28] L.M. Goncalves et al, "Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications," Thin Solid Films, vol. 519, pp. 4152-4157, March 2011.
[29] A. Soni et al, "Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered Bi2Te2.7Se0.3 Nanoplatelet Composites," Nano Lett., vol. 12, p. 4305−4310, July 2012.
[30] M. Mizoshiri et al, "Lift-off patterning of thermoelectric thick films deposited by a thermally assisted sputtering method," Appl. Phys. Express, vol. 7, pp. 1-4, April 2014.
[31] C. Schumacher et al, "Optimizations of Pulsed Plated p and n-type Bi2Te3-Based Ternary Compounds by Annealing in Different Ambient Atmospheres," Adv. Energy Mater., vol. 3, pp. 95-104, August 2012.
[32] H.J. Lin et al, "Effect of Annealing Temperature on the Thermoelectric Properties of the Bi0.5Sb1.5Te3 Thin Films Prepared by Radio-Frequency Sputtering," Metallurgical and Materials Transactions A, vol. 44, no 5, pp. 2339-2345, January 2013.
[33] M. Mizoshiri et al, "The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules," J. Micromech. Microeng., vol. 23, no. 11, pp. 1-9, October 2013.
[34] Z.B. Tang et al, "A research on thermoelectric generator`s electrical performance
under temperature mismatch conditions for automotive waste heat recovery
system," Case Studies in Thermal Engineering, vol. 5, p. 143–150, March 2015.
[35] W.S. Liu et al, "Understanding of the contact of nanostructured thermoelectric n
type Bi2Te2.7Se0.3 legs for power generation applications," J. Mater. Chem. A, vol. 1, p. 13093–13100, September 2013.
[36] R. Ditchfield et al, "Semiconductor surface diffusion: Effects of low-energy ion
bombardment," Physical Review B, vol. 63, pp. 1253171-9, March 2001.
[37] R. Ditchfield and E.G. Seebauer, "Direct Measurement of Ion-Influenced Surface
Diffusion," Physical Review Letters, vol. 82, no. 6, pp. 1185-1188, February 1999.
[38] T.C. Harman et al, "Quantum Dot Superlattice Thermoelectric Materials and
Devices," Science, vol. 297, pp. 2229-2232, Septempber 2002.
[39] J.P. Carmo et al, "Thermoelectric generator and solid-state battery for stand-alone microsystems," J. Micromech. Microeng, vol. 20, pp. 1-8, July 2010.
[40] H. Böttner et al, "New Thermoelectric Components Using Microsystem Technologies," Journal of Microelectrictromechanical System, vol. 13, no. 3, pp. 414-420, June 2004.
[41] I. Savani et al, "Harnessing thermoelectric power from transient heat sources: Waste heat recovery from silicon production," Energy Conversion and Management, vol. 138, p. 171–182, February 2017.
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202001470en_US