dc.contributor | 企管系 | |
dc.creator (作者) | 羅明琇 | |
dc.creator (作者) | Lo, Sonia M. | |
dc.creator (作者) | Chang, W.H. | |
dc.creator (作者) | Chen, T.L. | |
dc.creator (作者) | Chen, J.C.;Wu, H.N. | |
dc.date (日期) | 2020-08 | |
dc.date.accessioned | 2021-01-28 | - |
dc.date.available | 2021-01-28 | - |
dc.date.issued (上傳時間) | 2021-01-28 | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/133811 | - |
dc.description.abstract (摘要) | Taiwan since 1982. The Intensive-Modulated Radiation Therapy (IMRT) is one of the most important radio-therapiesofcancers,especiallyforNasopharyngealcancers,DigestivesystemcancersandCervicalcancers.Forpatients,iftheycanreceivethetreatmentattheearliestpossibilitywhilediagnosedwithcancers,theirsurvivalrate increases. However, the discussion of effective patient scheduling models of IMRT to reduce patients’waitingtimeisstilllimitedinliterature.Thisstudyproposedamathematicalmodeltoimprovetheefficiencyofpatientscheduling.Theresearchwascomposedoftwostages.Inthefirststage,theonlinestochasticalgorithmwasproposedtoimprovetheper-formanceofpresentschedulingsystem.Inthesecondstagetheimpactoffuturetreatmenttoreducepatients’waitingtimewasconsidered.Ageneticalgorithm(GA)wasthenproposedtosolvetheonlinestochasticsche-dulingproblem.Thisresearchcollecteddatafromapracticalmedicalinstituteandtheproposedmodelwasvalidatedwithrealdata.Itcontributestoboththeoryandpracticebyproposingapracticalmodeltoassistthemedicalinstituteinimplementingpatientschedulinginamoreeff | |
dc.format.extent | 2711095 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.relation (關聯) | Journal of Biomedical Informatics, Volume 108, August 2020, 103499 | |
dc.subject (關鍵詞) | Intensity-ModulatedRadiationTherapy(IMRT) ; Onlinestochasticscheduling ; Geneticalgorithm(GA) ; Radiotherapysch | |
dc.title (題名) | Utilizing online stochastic optimization on scheduling of Intensity-Modulate Radiotherapy Therapy (IMRT) | |
dc.type (資料類型) | article | |
dc.identifier.doi (DOI) | 10.1016/j.jbi.2020.103499 | |
dc.doi.uri (DOI) | https://doi.org/10.1016/j.jbi.2020.103499 | |