Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Forecasting Housing Markets from Number of Visits to Actual Price Registration System
作者 林左裕
Lin, Tsoyu Calvin
Hsu, Shih-Hsun
貢獻者 地政系
關鍵詞 Actual price registration system ; Hit rate ; Search behavior ; Big data ; Vector auto-regression with exogenous variables
日期 2020-01
上傳時間 16-Jun-2021 14:51:52 (UTC+8)
摘要 Taiwan launched the actual price registration system for real estate transactions in 2012. Real estate–related information, for e.g., prices, area and location, can be obtained through a search on this platform. Most market participants, including potential buyers and sellers, obtain property information before making their transaction decision. If the search behavior can be transferred into supply or demand action, then the number of visits to a website can be used as a leading indicator of price changes or transaction volume. This study has collected the number of visits to the actual price registration system in New Taipei City in Taiwan and other macro-economic variables from 2014 to 2019 and applied a model with vector auto-regression with exogenous variables (VARX) for empirical analysis. We find two important results in our analysis: 1. the transaction volume significantly leads house prices and the number of visits to this system in most districts, and 2. the number of visits leads transaction volume only in the district with a very good transportation system and infrastructures, and leads the house prices only in districts that have affordable house prices or deemed to be a “good value”. This is the first empirical study done after Taiwan launched the actual price registration system. Governments in other countries can launch similar systems and market participants can apply the findings of this study to their future policy and investment decision making process.
關聯 International Real Estate Review, 23:4, 1131-1162
資料類型 article
dc.contributor 地政系
dc.creator (作者) 林左裕
dc.creator (作者) Lin, Tsoyu Calvin
dc.creator (作者) Hsu, Shih-Hsun
dc.date (日期) 2020-01
dc.date.accessioned 16-Jun-2021 14:51:52 (UTC+8)-
dc.date.available 16-Jun-2021 14:51:52 (UTC+8)-
dc.date.issued (上傳時間) 16-Jun-2021 14:51:52 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/135798-
dc.description.abstract (摘要) Taiwan launched the actual price registration system for real estate transactions in 2012. Real estate–related information, for e.g., prices, area and location, can be obtained through a search on this platform. Most market participants, including potential buyers and sellers, obtain property information before making their transaction decision. If the search behavior can be transferred into supply or demand action, then the number of visits to a website can be used as a leading indicator of price changes or transaction volume. This study has collected the number of visits to the actual price registration system in New Taipei City in Taiwan and other macro-economic variables from 2014 to 2019 and applied a model with vector auto-regression with exogenous variables (VARX) for empirical analysis. We find two important results in our analysis: 1. the transaction volume significantly leads house prices and the number of visits to this system in most districts, and 2. the number of visits leads transaction volume only in the district with a very good transportation system and infrastructures, and leads the house prices only in districts that have affordable house prices or deemed to be a “good value”. This is the first empirical study done after Taiwan launched the actual price registration system. Governments in other countries can launch similar systems and market participants can apply the findings of this study to their future policy and investment decision making process.
dc.format.extent 1394177 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) International Real Estate Review, 23:4, 1131-1162
dc.subject (關鍵詞) Actual price registration system ; Hit rate ; Search behavior ; Big data ; Vector auto-regression with exogenous variables
dc.title (題名) Forecasting Housing Markets from Number of Visits to Actual Price Registration System
dc.type (資料類型) article