學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 大腦核磁共振影像之二維對位比較
Two-dimensional image registration on MRSI metabolite concentration maps
作者 吳柏賢
Wu, Po-Shien
貢獻者 蔡尚岳
Tsai, Shang-Yueh
吳柏賢
Wu, Po-Shien
關鍵詞 二維對位
三維對位
對位
相互資訊
標準化相互資訊
Two-dimensional registration
Three-dimensional registration
Registration
Mutual information
Normalized mutual information
日期 2021
上傳時間 1-七月-2021 20:01:42 (UTC+8)
摘要 本論文旨在使用二維對位的方法下,以不同頭型切片作為模板,比較二維對位方法與三維對位方法之間的效果差異。再以切片厚度作為控制變因,使用不同厚度的切片進行對位,以判斷切片厚度對於對位的影響。對位完成後,將影像資料元素代入標準化相互資訊的公式,量化兩影像之間相似的程度,其後建立數值矩陣,計算各矩陣內元素的平均與標準差,比較各組數值之間差異,判斷使用二維對位方法時,其效果與三維對位的差距。
In this paper, using the two-dimensional registration method to compare the effect differences between the two-dimensional registration method and the three-dimensional registration method via using different head slices.Thesection thicknessis used as the control variable, and different slice thicknessare used for registration to determine the effect of section thickness on registration.After the registrationcompleted, Substitute theelements of image datainto the Normalized mutual information formulato quantify the degree of similarity between the two images.Then establish the numerical matrix, calculating the average and standard deviation of the elements in each matrix, comparing the difference between the values of each group, and judging the difference between using three-dimensional registration methodand two-dimensional registration method.
參考文獻 [1]郭盈昇、陳啟仁、王宣惠、關婉君、蔡承坤、邱文達, “磁振造影於中樞神經系統之運用”,科儀新知,Vol.32,No.4,(2016)。
[2]JohnKurhanewiczDaniel, B.VigneronSarah,and J.Nelsonm, “Three-Dimensional Magnetic Resonance Spectroscopic Imaging of Brain and Prostate Cancer1,” Neoplasia, Vol. 2, Issue1-2, pp.166-189(2000).
[3]Senthil Periaswamy andHany Farid,“Elastic Registration in the Presence ofIntensity Variations,” IEEE Transactions on Medical Imaging, Vol.22,No.7(2003).
[4]Senthil Periaswamy and Hany Farid,“Medical Image Registration with Partial Data,”Medical Image Analysis, Vol. 10,Issue 10, pp.452-464(2006).
[5]Thomas M. Coverand Joy A. Thomas, “Elements of Information Theory,” JOHN WILEY & SONS, New Jersey,2006.
[6] La The Vinh, Sungyoung Lee, Young-Tack Park, and Brian J. d’Auriol, “A novel feature selection method based on normalized mutual information,” Applied Intelligence, Vol. 37, pp.100-120(2012).
描述 碩士
國立政治大學
應用物理研究所
107755003
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107755003
資料類型 thesis
dc.contributor.advisor 蔡尚岳zh_TW
dc.contributor.advisor Tsai, Shang-Yuehen_US
dc.contributor.author (作者) 吳柏賢zh_TW
dc.contributor.author (作者) Wu, Po-Shienen_US
dc.creator (作者) 吳柏賢zh_TW
dc.creator (作者) Wu, Po-Shienen_US
dc.date (日期) 2021en_US
dc.date.accessioned 1-七月-2021 20:01:42 (UTC+8)-
dc.date.available 1-七月-2021 20:01:42 (UTC+8)-
dc.date.issued (上傳時間) 1-七月-2021 20:01:42 (UTC+8)-
dc.identifier (其他 識別碼) G0107755003en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/135984-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 107755003zh_TW
dc.description.abstract (摘要) 本論文旨在使用二維對位的方法下,以不同頭型切片作為模板,比較二維對位方法與三維對位方法之間的效果差異。再以切片厚度作為控制變因,使用不同厚度的切片進行對位,以判斷切片厚度對於對位的影響。對位完成後,將影像資料元素代入標準化相互資訊的公式,量化兩影像之間相似的程度,其後建立數值矩陣,計算各矩陣內元素的平均與標準差,比較各組數值之間差異,判斷使用二維對位方法時,其效果與三維對位的差距。zh_TW
dc.description.abstract (摘要) In this paper, using the two-dimensional registration method to compare the effect differences between the two-dimensional registration method and the three-dimensional registration method via using different head slices.Thesection thicknessis used as the control variable, and different slice thicknessare used for registration to determine the effect of section thickness on registration.After the registrationcompleted, Substitute theelements of image datainto the Normalized mutual information formulato quantify the degree of similarity between the two images.Then establish the numerical matrix, calculating the average and standard deviation of the elements in each matrix, comparing the difference between the values of each group, and judging the difference between using three-dimensional registration methodand two-dimensional registration method.en_US
dc.description.tableofcontents 第一章 緒論 1
1.1 內容大綱 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究方法 2
第二章 方法與步驟 3
2.1 三維全腦對位 3
2.2 二維對位 14
2.3 標準化相互資訊 22
2.4 建立NMI數值矩陣 27
第三章 數據結果 28
3.1 取用與計算數值矩陣內元素 28
3.2 NMI數值矩陣之平均與標準差結果 29
第四章 結論 34
參考文獻 36
附件 37
附件A -二維對位 37
附件B -NMI算法一 38
附件C- NMI算法二 39
zh_TW
dc.format.extent 2846280 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107755003en_US
dc.subject (關鍵詞) 二維對位zh_TW
dc.subject (關鍵詞) 三維對位zh_TW
dc.subject (關鍵詞) 對位zh_TW
dc.subject (關鍵詞) 相互資訊zh_TW
dc.subject (關鍵詞) 標準化相互資訊zh_TW
dc.subject (關鍵詞) Two-dimensional registrationen_US
dc.subject (關鍵詞) Three-dimensional registrationen_US
dc.subject (關鍵詞) Registrationen_US
dc.subject (關鍵詞) Mutual informationen_US
dc.subject (關鍵詞) Normalized mutual informationen_US
dc.title (題名) 大腦核磁共振影像之二維對位比較zh_TW
dc.title (題名) Two-dimensional image registration on MRSI metabolite concentration mapsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1]郭盈昇、陳啟仁、王宣惠、關婉君、蔡承坤、邱文達, “磁振造影於中樞神經系統之運用”,科儀新知,Vol.32,No.4,(2016)。
[2]JohnKurhanewiczDaniel, B.VigneronSarah,and J.Nelsonm, “Three-Dimensional Magnetic Resonance Spectroscopic Imaging of Brain and Prostate Cancer1,” Neoplasia, Vol. 2, Issue1-2, pp.166-189(2000).
[3]Senthil Periaswamy andHany Farid,“Elastic Registration in the Presence ofIntensity Variations,” IEEE Transactions on Medical Imaging, Vol.22,No.7(2003).
[4]Senthil Periaswamy and Hany Farid,“Medical Image Registration with Partial Data,”Medical Image Analysis, Vol. 10,Issue 10, pp.452-464(2006).
[5]Thomas M. Coverand Joy A. Thomas, “Elements of Information Theory,” JOHN WILEY & SONS, New Jersey,2006.
[6] La The Vinh, Sungyoung Lee, Young-Tack Park, and Brian J. d’Auriol, “A novel feature selection method based on normalized mutual information,” Applied Intelligence, Vol. 37, pp.100-120(2012).
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202100531en_US