學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 基於多數決的不當訊息分析學習系統
A majority-based learning system for analyzing misinformation作者 高翰君
Kao, Han-Chun貢獻者 杜雨儒
Tu, Yu-Ju
高翰君
Kao, Han-Chun關鍵詞 不當訊息
資訊系統
機器學習
假新聞
業配文
原生廣告
抄襲文
Misinformation
Information system
machine learning
fake news
advertorial
native advertising
plagiarism日期 2021 上傳時間 4-八月-2021 14:46:35 (UTC+8) 摘要 自過去的十年以來,不當訊息的問題引起了人們的廣泛關注。 直到最近,這個問題變得比以往更具挑戰性,其中一原因來自於covid-19大流行在世界各地蔓延。 在這項研究中,我們表明不當訊息是由三個主要部分構成的:假新聞、業配文和抄襲文。 此外,本研究提出了一種系統,透過整合多種機器學習方法的優勢,以提高不當訊息自主檢測的性能。
Since the past decade, the problem of misinformation has drawn considerable attention. Recently, this problem becomes much more challenging, largely because the covid-19 pandemic unfortunately spread around the world. In this study, we show that misinformation is constructed by three main components: fake news, advertorial and plagiarism. Furthermore, we propose a system to combine the strengths of multiple machine learning approaches to improve the performance of autonomous detection of misinformation.參考文獻 1. Advertorial. (2020) In OED Online, Oxford University Press. Retrieved from www.oed.com/view/Entry/2983.2. Ahmed, H., Traore, I., & Saad, S. (2018). Detecting opinion spams and fake news using text classification. Security and Privacy, 1(1), e9.3. Akhtar, M. S., Ekbal, A., Narayan, S., Singh, V., & Cambria, E. (2018). No, that never happened!! Investigating rumors on Twitter. IEEE Intelligent Systems, 33(5), 8-15.4. Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-36.5. Alzahrani, S. M., Salim, N., & Abraham, A. (2011). Understanding plagiarism linguistic patterns, textual features, and detection methods. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2), 133-149.6. Atallah, R., & Al-Mousa, A. (2019, October). Heart Disease Detection Using Machine Learning Majority Voting Ensemble Method. In 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS) (pp. 1-6). IEEE.7. Bakker, P. (2012). Aggregation, content farms and Huffinization: The rise of low-pay and no-pay journalism. Journalism practice, 6(5-6), 627-637.8. Bär, D., Zesch, T., & Gurevych, I. (2012). Text reuse detection using a composition of text similarity measures. Proceedings of COLING 2012, 167-184.9. Bessi, A., Coletto, M., Davidescu, G. A., Scala, A., Caldarelli, G., & Quattrociocchi, W. (2015). Science vs conspiracy: Collective narratives in the age of misinformation. PloS one, 10(2), e0118093.10. Bhagavatula, S., Dunn, C., Kanich, C., Gupta, M., & Ziebart, B. (2014, November). Leveraging machine learning to improve unwanted resource filtering. In Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop (pp. 95-102).11. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.12. Burrows, S., Potthast, M., & Stein, B. (2013). Paraphrase acquisition via crowdsourcing and machine learning. ACM Transactions on Intelligent Systems and Technology (TIST), 4(3), 1-21.13. Cameron, G. T., & Ju-Pak, K. H. (2000). Information pollution?: Labeling and format of advertorials. Newspaper Research Journal, 21(1), 65-76.14. Cameron, G. T., Ju-Pak, K. H., & Kim, B. H. (1996). Advertorials in magazines: Current use and compliance with industry guidelines. Journalism & Mass Communication Quarterly, 73(3), 722-733.15. Campbell, C., & Marks, L. J. (2015). Good native advertising isn’ta secret. Business Horizons, 58(6), 599-606.16. Castillo, C., Mendoza, M., & Poblete, B. (2011, March). Information credibility on twitter. In Proceedings of the 20th international conference on World wide web (pp. 675-684).17. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).18. Chitra, A., & Rajkumar, A. (2016). Plagiarism detection using machine learning-based paraphrase recognizer. Journal of Intelligent Systems, 25(3), 351-359.19. Clough, P. (2003). Old and new challenges in automatic plagiarism detection. In National Plagiarism Advisory Service, 2003; http://ir. shef. ac. uk/cloughie/index. html.20. Dadgar, S. M. H., Araghi, M. S., & Farahani, M. M. (2016, March). A novel text mining approach based on TF-IDF and Support Vector Machine for news classification. In 2016 IEEE International Conference on Engineering and Technology (ICETECH) (pp. 112-116). IEEE.21. Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., ... & Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554-559.22. Disinformation. (2020) In Cambridge dictionary, Cambridge University Press. Retrieved from https://dictionary.cambridge.org/us/dictionary/english/disinformation23. Doerr, B., Fouz, M., & Friedrich, T. (2012). Why rumors spread so quickly in social networks. Communications of the ACM, 55(6), 70-75.24. Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1997). Support vector regression machines. Advances in neural information processing systems, 155-161.25. Eiselt, M. P. B. S. A., & Rosso, A. B. C. P. (2009). Overview of the 1st international competition on plagiarism detection. In 3rd PAN Workshop. Uncovering Plagiarism, Authorship and Social Software Misuse (p. 1).26. Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96-104.27. Fix, E., & Hodges Jr, J. L. (1952). Discriminatory analysis-nonparametric discrimination: Small sample performance.28. Ellerbach, J. (2004). The advertorial as information pollution. Journal of information ethics, 61.29. Fake news. (2020) In OED Online, Oxford University Press. Retrieved from https://www.oed.com/view/Entry/67776.30. Frank, T. (2011). Bright Frenetic Mills. Will the Last Reporter Turn Out the Lights, ed. Robert W. McChesney and Victor Pickard (New York: The New Press, 2011), 114.31. Friggeri, A., Adamic, L., Eckles, D., & Cheng, J. (2014, May). Rumor cascades. In Eighth international AAAI conference on weblogs and social media.32. Gelfert, A. (2018). Fake news: A definition. Informal Logic, 38(1), 84-117.33. Gilda, S. (2017, December). Evaluating machine learning algorithms for fake news detection. In 2017 IEEE 15th Student Conference on Research and Development (SCOReD) (pp. 110-115). IEEE.34. Gupta, A., Lamba, H., Kumaraguru, P., & Joshi, A. (2013, May). Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In Proceedings of the 22nd international conference on World Wide Web (pp. 729-736).35. Helmstetter, S., & Paulheim, H. (2018, August). Weakly supervised learning for fake news detection on Twitter. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 274-277). IEEE.36. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.37. Janze, C., & Risius, M. (2017). Automatic Detection of Fake News on Social Media Platforms. PACIS, 261.38. Jin, F., Dougherty, E., Saraf, P., Cao, Y., & Ramakrishnan, N. (2013, August). Epidemiological modeling of news and rumors on twitter. In Proceedings of the 7th workshop on social network mining and analysis (pp. 1-9).39. Jin, Z., Cao, J., Zhang, Y., Zhou, J., & Tian, Q. (2016). Novel visual and statistical image features for microblogs news verification. IEEE transactions on multimedia, 19(3), 598-608.40. Kim, B. H., Pasadeos, Y., & Barban, A. (2001). On the deceptive effectiveness of labeled and unlabeled advertorial formats. Mass Communication & Society, 4(3), 265-281.41. Kwon, S., Cha, M., & Jung, K. (2017). Rumor detection over varying time windows. PloS one, 12(1), e0168344.42. Lam, L., & Suen, C. Y. (1995). Optimal combinations of pattern classifiers. Pattern Recognition Letters, 16(9), 945-954.43. Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., ... & Schudson, M. (2018). The science of fake news. Science, 359(6380), 1094-1096.44. Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009, June). Beyond blacklists: learning to detect malicious web sites from suspicious URLs. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1245-1254).45. Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2011). Learning to detect malicious urls. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1-24.46. Ma, Wei-Yun and Keh-Jiann Chen, 2003, "Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff", Proceedings of ACL, Second SIGHAN Workshop on Chinese Language Processing, pp168-17147. Matt Cutts. (2011, Jan 21). Google search and search engine spam [Blog post]. Retrieved from https://googleblog.blogspot.com/2011/01/google-search-and-search-engine-spam.html48. Maurer, H. A., Kappe, F., & Zaka, B. (2006). Plagiarism-A survey. J. UCS, 12(8), 1050-1084.49. McCreadie, R., Macdonald, C., Ounis, I., Giles, J., & Jabr, F. (2012, October). An examination of content farms in web search using crowdsourcing. In Proceedings of the 21st ACM international conference on Information and knowledge management (pp. 2551-2554).50. Misinformation. (2020)In Merriam-Webster.com dictionary, Merriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/misinformation51. Opinion. (2021)In Merriam-Webster.com dictionary, Merriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/opinion52. Ozbay, F. A., & Alatas, B. (2020). Fake news detection within online social media using supervised artificial intelligence algorithms. Physica A: Statistical Mechanics and its Applications, 540, 123174.53. Parikh, S. B., & Atrey, P. K. (2018, April). Media-rich fake news detection: A survey. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 436-441). IEEE.54. Plagisrism. (2020) In OED Online, Oxford University Press. Retrieved from www.oed.com/view/Entry/14493955. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2017). A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638.56. Propaganda. (2021)In Merriam-Webster.com dictionary, Merriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/propaganda57. Rahman, A. F. R., Alam, H., & Fairhurst, M. C. (2002, August). Multiple classifier combination for character recognition: Revisiting the majority voting system and its variations. In International Workshop on Document Analysis Systems (pp. 167-178). Springer, Berlin, Heidelberg.58. Randhawa, K., Loo, C. K., Seera, M., Lim, C. P., & Nandi, A. K. (2018). Credit card fraud detection using AdaBoost and majority voting. IEEE access, 6, 14277-14284.59. Reis, J. C., Correia, A., Murai, F., Veloso, A., & Benevenuto, F. (2019). Supervised learning for fake news detection. IEEE Intelligent Systems, 34(2), 76-81.60. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.61. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523.62. Saltz, H. (1995). Advertorial lies. Editor & Publisher, 128(36), 48-49.63. Shih, L. K., & Karger, D. R. (2004, May). Using urls and table layout for web classification tasks. In Proceedings of the 13th international conference on World Wide Web (pp. 193-202).64. Shores, M. (2019). The Rise of Content Farms.65. Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36.66. Sun, J., & Li, H. (2008). Listed companies’ financial distress prediction based on weighted majority voting combination of multiple classifiers. Expert Systems with Applications, 35(3), 818-827.67. Szczepański, P. L., Wiśniewski, A., & Gerszberg, T. (2013). An automated framework with application to study URL based online advertisements detection. Journal of Applied Mathematics, Statistics and Informatics, 9(1), 47-60.68. Tandoc Jr, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news” A typology of scholarly definitions. Digital journalism, 6(2), 137-153.69. Tsai, C. F., Lin, Y. C., Yen, D. C., & Chen, Y. M. (2011). Predicting stock returns by classifier ensembles. Applied Soft Computing, 11(2), 2452-2459.70. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151.71. Wang, B., Kim, S., & Malthouse, E. C. (2016). Branded apps and mobile platforms as new tools for advertising. The new advertising: Branding, content, and consumer relationships in the data-driven social media era, 2, 123-156.72. What is Plagiarism? (2017, May 18). Retrieved from https://plagiarism.org/article/what-is-plagiarism73. Williamson, P. (2016). Take the time and effort to correct misinformation. Nature, 540(7632), 171-171.74. Zhou, X., & Zafarani, R. (2018). Fake news: A survey of research, detection methods, and opportunities. arXiv preprint arXiv:1812.00315. 描述 碩士
國立政治大學
資訊管理學系
108356004資料來源 http://thesis.lib.nccu.edu.tw/record/#G0108356004 資料類型 thesis dc.contributor.advisor 杜雨儒 zh_TW dc.contributor.advisor Tu, Yu-Ju en_US dc.contributor.author (作者) 高翰君 zh_TW dc.contributor.author (作者) Kao, Han-Chun en_US dc.creator (作者) 高翰君 zh_TW dc.creator (作者) Kao, Han-Chun en_US dc.date (日期) 2021 en_US dc.date.accessioned 4-八月-2021 14:46:35 (UTC+8) - dc.date.available 4-八月-2021 14:46:35 (UTC+8) - dc.date.issued (上傳時間) 4-八月-2021 14:46:35 (UTC+8) - dc.identifier (其他 識別碼) G0108356004 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/136339 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理學系 zh_TW dc.description (描述) 108356004 zh_TW dc.description.abstract (摘要) 自過去的十年以來,不當訊息的問題引起了人們的廣泛關注。 直到最近,這個問題變得比以往更具挑戰性,其中一原因來自於covid-19大流行在世界各地蔓延。 在這項研究中,我們表明不當訊息是由三個主要部分構成的:假新聞、業配文和抄襲文。 此外,本研究提出了一種系統,透過整合多種機器學習方法的優勢,以提高不當訊息自主檢測的性能。 zh_TW dc.description.abstract (摘要) Since the past decade, the problem of misinformation has drawn considerable attention. Recently, this problem becomes much more challenging, largely because the covid-19 pandemic unfortunately spread around the world. In this study, we show that misinformation is constructed by three main components: fake news, advertorial and plagiarism. Furthermore, we propose a system to combine the strengths of multiple machine learning approaches to improve the performance of autonomous detection of misinformation. en_US dc.description.tableofcontents 1. Introduction 51.1 Background 51.2 Research questions 62. Literature review 82.1 Definition of misinformation 82.2 The case of content farms and the quality of information 102.3 Fake news 122.4 Plagiarism 202.5 Advertorial and native advertising content 222.6 Related studies of misinformation detection 253. Proposed model 314. Computational experiments 365. Summary of findings 396. Conclusions 42References 43Appendix 49 zh_TW dc.format.extent 2525782 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0108356004 en_US dc.subject (關鍵詞) 不當訊息 zh_TW dc.subject (關鍵詞) 資訊系統 zh_TW dc.subject (關鍵詞) 機器學習 zh_TW dc.subject (關鍵詞) 假新聞 zh_TW dc.subject (關鍵詞) 業配文 zh_TW dc.subject (關鍵詞) 原生廣告 zh_TW dc.subject (關鍵詞) 抄襲文 zh_TW dc.subject (關鍵詞) Misinformation en_US dc.subject (關鍵詞) Information system en_US dc.subject (關鍵詞) machine learning en_US dc.subject (關鍵詞) fake news en_US dc.subject (關鍵詞) advertorial en_US dc.subject (關鍵詞) native advertising en_US dc.subject (關鍵詞) plagiarism en_US dc.title (題名) 基於多數決的不當訊息分析學習系統 zh_TW dc.title (題名) A majority-based learning system for analyzing misinformation en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 1. Advertorial. (2020) In OED Online, Oxford University Press. Retrieved from www.oed.com/view/Entry/2983.2. Ahmed, H., Traore, I., & Saad, S. (2018). Detecting opinion spams and fake news using text classification. Security and Privacy, 1(1), e9.3. Akhtar, M. S., Ekbal, A., Narayan, S., Singh, V., & Cambria, E. (2018). No, that never happened!! Investigating rumors on Twitter. IEEE Intelligent Systems, 33(5), 8-15.4. Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-36.5. Alzahrani, S. M., Salim, N., & Abraham, A. (2011). Understanding plagiarism linguistic patterns, textual features, and detection methods. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2), 133-149.6. Atallah, R., & Al-Mousa, A. (2019, October). Heart Disease Detection Using Machine Learning Majority Voting Ensemble Method. In 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS) (pp. 1-6). IEEE.7. Bakker, P. (2012). Aggregation, content farms and Huffinization: The rise of low-pay and no-pay journalism. Journalism practice, 6(5-6), 627-637.8. Bär, D., Zesch, T., & Gurevych, I. (2012). Text reuse detection using a composition of text similarity measures. Proceedings of COLING 2012, 167-184.9. Bessi, A., Coletto, M., Davidescu, G. A., Scala, A., Caldarelli, G., & Quattrociocchi, W. (2015). Science vs conspiracy: Collective narratives in the age of misinformation. PloS one, 10(2), e0118093.10. Bhagavatula, S., Dunn, C., Kanich, C., Gupta, M., & Ziebart, B. (2014, November). Leveraging machine learning to improve unwanted resource filtering. In Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop (pp. 95-102).11. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.12. Burrows, S., Potthast, M., & Stein, B. (2013). Paraphrase acquisition via crowdsourcing and machine learning. ACM Transactions on Intelligent Systems and Technology (TIST), 4(3), 1-21.13. Cameron, G. T., & Ju-Pak, K. H. (2000). Information pollution?: Labeling and format of advertorials. Newspaper Research Journal, 21(1), 65-76.14. Cameron, G. T., Ju-Pak, K. H., & Kim, B. H. (1996). Advertorials in magazines: Current use and compliance with industry guidelines. Journalism & Mass Communication Quarterly, 73(3), 722-733.15. Campbell, C., & Marks, L. J. (2015). Good native advertising isn’ta secret. Business Horizons, 58(6), 599-606.16. Castillo, C., Mendoza, M., & Poblete, B. (2011, March). Information credibility on twitter. In Proceedings of the 20th international conference on World wide web (pp. 675-684).17. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).18. Chitra, A., & Rajkumar, A. (2016). Plagiarism detection using machine learning-based paraphrase recognizer. Journal of Intelligent Systems, 25(3), 351-359.19. Clough, P. (2003). Old and new challenges in automatic plagiarism detection. In National Plagiarism Advisory Service, 2003; http://ir. shef. ac. uk/cloughie/index. html.20. Dadgar, S. M. H., Araghi, M. S., & Farahani, M. M. (2016, March). A novel text mining approach based on TF-IDF and Support Vector Machine for news classification. In 2016 IEEE International Conference on Engineering and Technology (ICETECH) (pp. 112-116). IEEE.21. Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., ... & Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554-559.22. Disinformation. (2020) In Cambridge dictionary, Cambridge University Press. Retrieved from https://dictionary.cambridge.org/us/dictionary/english/disinformation23. Doerr, B., Fouz, M., & Friedrich, T. (2012). Why rumors spread so quickly in social networks. Communications of the ACM, 55(6), 70-75.24. Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1997). Support vector regression machines. Advances in neural information processing systems, 155-161.25. Eiselt, M. P. B. S. A., & Rosso, A. B. C. P. (2009). Overview of the 1st international competition on plagiarism detection. In 3rd PAN Workshop. Uncovering Plagiarism, Authorship and Social Software Misuse (p. 1).26. Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96-104.27. Fix, E., & Hodges Jr, J. L. (1952). Discriminatory analysis-nonparametric discrimination: Small sample performance.28. Ellerbach, J. (2004). The advertorial as information pollution. Journal of information ethics, 61.29. Fake news. (2020) In OED Online, Oxford University Press. Retrieved from https://www.oed.com/view/Entry/67776.30. Frank, T. (2011). Bright Frenetic Mills. Will the Last Reporter Turn Out the Lights, ed. Robert W. McChesney and Victor Pickard (New York: The New Press, 2011), 114.31. Friggeri, A., Adamic, L., Eckles, D., & Cheng, J. (2014, May). Rumor cascades. In Eighth international AAAI conference on weblogs and social media.32. Gelfert, A. (2018). Fake news: A definition. Informal Logic, 38(1), 84-117.33. Gilda, S. (2017, December). Evaluating machine learning algorithms for fake news detection. In 2017 IEEE 15th Student Conference on Research and Development (SCOReD) (pp. 110-115). IEEE.34. Gupta, A., Lamba, H., Kumaraguru, P., & Joshi, A. (2013, May). Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In Proceedings of the 22nd international conference on World Wide Web (pp. 729-736).35. Helmstetter, S., & Paulheim, H. (2018, August). Weakly supervised learning for fake news detection on Twitter. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 274-277). IEEE.36. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.37. Janze, C., & Risius, M. (2017). Automatic Detection of Fake News on Social Media Platforms. PACIS, 261.38. Jin, F., Dougherty, E., Saraf, P., Cao, Y., & Ramakrishnan, N. (2013, August). Epidemiological modeling of news and rumors on twitter. In Proceedings of the 7th workshop on social network mining and analysis (pp. 1-9).39. Jin, Z., Cao, J., Zhang, Y., Zhou, J., & Tian, Q. (2016). Novel visual and statistical image features for microblogs news verification. IEEE transactions on multimedia, 19(3), 598-608.40. Kim, B. H., Pasadeos, Y., & Barban, A. (2001). On the deceptive effectiveness of labeled and unlabeled advertorial formats. Mass Communication & Society, 4(3), 265-281.41. Kwon, S., Cha, M., & Jung, K. (2017). Rumor detection over varying time windows. PloS one, 12(1), e0168344.42. Lam, L., & Suen, C. Y. (1995). Optimal combinations of pattern classifiers. Pattern Recognition Letters, 16(9), 945-954.43. Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., ... & Schudson, M. (2018). The science of fake news. Science, 359(6380), 1094-1096.44. Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009, June). Beyond blacklists: learning to detect malicious web sites from suspicious URLs. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1245-1254).45. Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2011). Learning to detect malicious urls. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1-24.46. Ma, Wei-Yun and Keh-Jiann Chen, 2003, "Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff", Proceedings of ACL, Second SIGHAN Workshop on Chinese Language Processing, pp168-17147. Matt Cutts. (2011, Jan 21). Google search and search engine spam [Blog post]. Retrieved from https://googleblog.blogspot.com/2011/01/google-search-and-search-engine-spam.html48. Maurer, H. A., Kappe, F., & Zaka, B. (2006). Plagiarism-A survey. J. UCS, 12(8), 1050-1084.49. McCreadie, R., Macdonald, C., Ounis, I., Giles, J., & Jabr, F. (2012, October). An examination of content farms in web search using crowdsourcing. In Proceedings of the 21st ACM international conference on Information and knowledge management (pp. 2551-2554).50. Misinformation. (2020)In Merriam-Webster.com dictionary, Merriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/misinformation51. Opinion. (2021)In Merriam-Webster.com dictionary, Merriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/opinion52. Ozbay, F. A., & Alatas, B. (2020). Fake news detection within online social media using supervised artificial intelligence algorithms. Physica A: Statistical Mechanics and its Applications, 540, 123174.53. Parikh, S. B., & Atrey, P. K. (2018, April). Media-rich fake news detection: A survey. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 436-441). IEEE.54. Plagisrism. (2020) In OED Online, Oxford University Press. Retrieved from www.oed.com/view/Entry/14493955. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2017). A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638.56. Propaganda. (2021)In Merriam-Webster.com dictionary, Merriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/propaganda57. Rahman, A. F. R., Alam, H., & Fairhurst, M. C. (2002, August). Multiple classifier combination for character recognition: Revisiting the majority voting system and its variations. In International Workshop on Document Analysis Systems (pp. 167-178). Springer, Berlin, Heidelberg.58. Randhawa, K., Loo, C. K., Seera, M., Lim, C. P., & Nandi, A. K. (2018). Credit card fraud detection using AdaBoost and majority voting. IEEE access, 6, 14277-14284.59. Reis, J. C., Correia, A., Murai, F., Veloso, A., & Benevenuto, F. (2019). Supervised learning for fake news detection. IEEE Intelligent Systems, 34(2), 76-81.60. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.61. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523.62. Saltz, H. (1995). Advertorial lies. Editor & Publisher, 128(36), 48-49.63. Shih, L. K., & Karger, D. R. (2004, May). Using urls and table layout for web classification tasks. In Proceedings of the 13th international conference on World Wide Web (pp. 193-202).64. Shores, M. (2019). The Rise of Content Farms.65. Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36.66. Sun, J., & Li, H. (2008). Listed companies’ financial distress prediction based on weighted majority voting combination of multiple classifiers. Expert Systems with Applications, 35(3), 818-827.67. Szczepański, P. L., Wiśniewski, A., & Gerszberg, T. (2013). An automated framework with application to study URL based online advertisements detection. Journal of Applied Mathematics, Statistics and Informatics, 9(1), 47-60.68. Tandoc Jr, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news” A typology of scholarly definitions. Digital journalism, 6(2), 137-153.69. Tsai, C. F., Lin, Y. C., Yen, D. C., & Chen, Y. M. (2011). Predicting stock returns by classifier ensembles. Applied Soft Computing, 11(2), 2452-2459.70. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151.71. Wang, B., Kim, S., & Malthouse, E. C. (2016). Branded apps and mobile platforms as new tools for advertising. The new advertising: Branding, content, and consumer relationships in the data-driven social media era, 2, 123-156.72. What is Plagiarism? (2017, May 18). Retrieved from https://plagiarism.org/article/what-is-plagiarism73. Williamson, P. (2016). Take the time and effort to correct misinformation. Nature, 540(7632), 171-171.74. Zhou, X., & Zafarani, R. (2018). Fake news: A survey of research, detection methods, and opportunities. arXiv preprint arXiv:1812.00315. zh_TW dc.identifier.doi (DOI) 10.6814/NCCU202100686 en_US