學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 Bi1.7+xSb0.3-xTe2.7Se0.3+y wt%Te x=0、0.05、0.1 y=15、20、25 熱電性質研究
The Thermoelectric Properties Study of Bi1.7+xSb0.3-xTe2.7Se0.3+y wt%Te x=0、0.05、0.1 y=15、20、25
作者 李岷錡
Chi, Li Min
貢獻者 陳洋元
Chen,Yang Yuan
李岷錡
Li Min Chi
關鍵詞 熱電材料
化學參雜
布里奇曼法
火花電漿燒結
碲化鉍
Thermoelectric material
Chemical doping
Bridgman-Stockbarger Method
Spark plasma sintering
Bismuth Telluride
日期 2021
上傳時間 2-九月-2021 16:58:12 (UTC+8)
摘要 隨著21世紀的來臨,能源議題逐年被重視,許多新興材料以及相關研究課題正如火如荼進行中,其中之一的熱電材料,著眼於其無須透過機械裝置的耦合而可達到熱能與電能的直接互相轉換,近20年來不斷地被研究,其中Bi2Te3 因為其ZT最大值落在300~500 K之間,對於室溫範圍具有應用潛力,因此本論文之研究課題以Bi1.7Sb0.3Te.27Se0.3為基礎尋找具高熱電轉換效率之n型合金塊材,透過Sb及過量的Te參雜量的調制(Sb: 0.05-0.1, Te: 15-30wt%),尋找最佳熱電轉換效率之熱電材料,並研究不同的製程方式對ZT值的影響,分別使用布里奇曼法(Bridgman-Stockbarger Method)、高溫燒結(Furnace melting)、火花電漿燒結 (SPS)製備樣品,研究不同參雜比例對熱電性質的影響,製備之樣品以X光繞射儀(XRD)分析結晶相,X-光螢光分析儀 (XRF)確認元素成分比例,ZEM-3分析導電係數以與席貝克係數,並探討以上物理量、材料特性與不同長晶方法及成分之間的關係,以高溫燒結製備之Bi1.75Sb0.25Te2.7Se0.3樣品為參考,其材料優質係數ZT約為0.55, 而Bi1.75Sb0.25Te2.7Se0.3+15wt%Te使用布里奇曼法在750度每小時5 mm的長晶速率所製備之塊才其ZT則最高可達0.84,而火花電漿燒結系統在380度50 MPa的條件下所得到的材料其ZT值則達0.8,相較於Bi1.75Sb0.25Te2.7Se0.3之樣品均有顯著提升,添加Sb與Te確實可有效提升zT值,然而當Te添加量過多,zT值不升反降,研究結果顯示Te添加量不應超過20wt%,。
At the start of the 21st century, energy issues have been paid attention year by year, as a potential solution for saving energy, thermoelectric materials have attracted a lot of study in the past 20 years. Among thermoelectric materials, Bi2Te3, because its maximum ZT value falls between 300 and 500 K makes it a high application potential near the room temperature range. Therefore, we are interested in if the Bi2Te3-based materials can be tuned to even improved advance. This work focused on the n-type materials Bi1.7Sb0.3Te2.7Se0.3, looking for n-type alloy bulk materials with high thermoelectric conversion efficiency by doping level tuning of Sb and Te (Sb: 0.05-0.1, Te: 15-30wt%). Meanwhile, three synthesize methods Bridgeman-Stockbarger Method, Furnace melting, spark plasma sintering (SPS) are employed to study the influence of the method on the ZT values and effects on thermoelectric properties. The prepared samples are analyzed by X-ray diffractometer (XRD) and X-ray fluorescence analyzer (XRF) for identification of crystalline phases and the atomic ratio. The ZEM-3 and LFA are employed to study the electrical conductivity and Seebeck coefficient, and thermal conductivity, respectively. Taking the Bi1.75Sb0.25Te2.7Se0.3 sample that is prepared by the pre-melting method as a reference, the material figure of merit ZT is about 0.55. While the maxima ZTs of Bi1.75Sb0.25Te2.7Se0.3+15wt%Te that prepped by the Bridgman method (growth rate of 5 mm/hr at 750 degrees) and by the spark plasma sintering system (at 380 degrees 50 MPa) are reached up to 0.84 and 0.8, respectively. Which are significantly higher than that of the Bi1.75Sb0.25Te2.7Se0.3. However, the zT suppressed at high tuning level, which indicates that the Te tuning shall not higher than 20wt%.
參考文獻 [1]謝逸聆,為邁向2025非核家園目標 推動新能源政策
上網日期,105-09-17
檢自:https://www.ey.gov.tw/Page/9277F759E41CCD91/c094fb4e-6c07-4a87-9435-fb97f11dde10
[2]Pee-Yew Lee, Guo-Yang Hsu , Jing-Yi Huang, Huey-Lin Hsieh ,
Hung-Chang Hsu(2003)。Bi2Te3熱電合金塊材之製備與特性研究,台灣材料學會
[3] Фазовая диаграмма системы Bi-Te,檢自:http://www.himikatus.ru/art/phase-diagr1/Bi-Te.php
[4]陳洋元 陳正龍,熱電於再生能源之運用,2020-04-15,檢自:https://pb.ps-taiwan.org/catalog/ins.php?index_m1_id=5&index_id=548
[5] 魏百駿,導電不導熱的熱電材料新契機,2017年3月29日,檢自:http://scimonth.blogspot.com/2017/03/blog-post_4.html
[6]熱電說:聲子無非三兩闋|Ising專欄,2018-05-13,檢自:https://kknews.cc/zh-tw/science/ebroopq.html
[7] Classical and Statistical Thermodynamics (Ashley H.
Carter) 16.3 節,p296 –p301。
[8] 取材於THERMOELECTRICS HANDBOOKS—MACRO TO NANO, edited by D. M. Rowe)
[9] 氫氧焰水焊機原理,檢自http://umwelder.byethost5.com/news.html
[10]Bridgman–Stockbarger方法,檢自
:https://en.wikipedia.org/wiki/Bridgman%E2%80%93Stockbarger_method
[11]Review of Scientific Instruments 86, 023904 (2015); https://doi.org/10.1063/1.4913529
[12]汎達科技,精密切割機,檢自:https://www.pentad.com.tw/product/41
[13]全拓科技有限公司,NETZSCH LFA 457 閃光法熱擴散熱傳導分析儀 說明影片,2014年1月28日,檢自:https://www.youtube.com/watch?v=POrSr9sC_qA
[14]NETZSCH Group,Laser Flash Apparatus,檢自:https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/lfa-457-microflash/
[15] NETZSCH Group,Principle of the LFA Method,
檢自:https://www.netzsch-thermal-analysis.com/en/landing-pages/principle-of-the-lfa-method/
[16] 四端點測量技術,2014年5月5日,檢自
:https://zh.wikipedia.org/wiki/%E5%9B%9B%E7%AB%AF%E7%82%B9%E6%B5%8B%E9%87%8F%E6%8A%80%E6%9C%AF
[17]ADVANCE RIKO,Inc.,熱電特性評價裝置ZEM-3系列,檢自:https://advance-riko.com/zh-hans/products/zem-3/
[18]檢自:https://www.malvernpanalytical.com/en/products/product-range/empyreanrange/empyrean/?campaignid=1472123684&adgroupid=62535119892&creative=281861300634&keyword=panalytical%20empyrean%20x%20ray%20diffractometer&matchtype=e&network=g&device=c&gclid=EAIaIQobChMIivyO-46y8AIVmraWCh2YogZiEAAYASAAEgLDQvD_BwE#Overview-0
[19]阮弼群,教學設備介紹,檢自:https://mse.mcut.edu.tw/p/412-1043-968.php?Lang=zh-tw
[20]國家實驗研究院,科普講堂,檢自:
https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604
[21]利泓科技,XRF (X-ray Fluorescence Spectrometer)光譜分析原理,2017年,檢自:https://www.rightek.com.tw/product_detail.php?id=183
[22] Quantum Design 中國子公司,2012年09月,綜合物性測量系統(PPMS)產品說明手冊,美國: Quantum Design 公司。
[23] Bin Zhu, Energy Environ. Sci., 2020, 13, 2106,
描述 碩士
國立政治大學
應用物理研究所
108755012
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0108755012
資料類型 thesis
dc.contributor.advisor 陳洋元zh_TW
dc.contributor.advisor Chen,Yang Yuanen_US
dc.contributor.author (作者) 李岷錡zh_TW
dc.contributor.author (作者) Li Min Chien_US
dc.creator (作者) 李岷錡zh_TW
dc.creator (作者) Chi, Li Minen_US
dc.date (日期) 2021en_US
dc.date.accessioned 2-九月-2021 16:58:12 (UTC+8)-
dc.date.available 2-九月-2021 16:58:12 (UTC+8)-
dc.date.issued (上傳時間) 2-九月-2021 16:58:12 (UTC+8)-
dc.identifier (其他 識別碼) G0108755012en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/136972-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 108755012zh_TW
dc.description.abstract (摘要) 隨著21世紀的來臨,能源議題逐年被重視,許多新興材料以及相關研究課題正如火如荼進行中,其中之一的熱電材料,著眼於其無須透過機械裝置的耦合而可達到熱能與電能的直接互相轉換,近20年來不斷地被研究,其中Bi2Te3 因為其ZT最大值落在300~500 K之間,對於室溫範圍具有應用潛力,因此本論文之研究課題以Bi1.7Sb0.3Te.27Se0.3為基礎尋找具高熱電轉換效率之n型合金塊材,透過Sb及過量的Te參雜量的調制(Sb: 0.05-0.1, Te: 15-30wt%),尋找最佳熱電轉換效率之熱電材料,並研究不同的製程方式對ZT值的影響,分別使用布里奇曼法(Bridgman-Stockbarger Method)、高溫燒結(Furnace melting)、火花電漿燒結 (SPS)製備樣品,研究不同參雜比例對熱電性質的影響,製備之樣品以X光繞射儀(XRD)分析結晶相,X-光螢光分析儀 (XRF)確認元素成分比例,ZEM-3分析導電係數以與席貝克係數,並探討以上物理量、材料特性與不同長晶方法及成分之間的關係,以高溫燒結製備之Bi1.75Sb0.25Te2.7Se0.3樣品為參考,其材料優質係數ZT約為0.55, 而Bi1.75Sb0.25Te2.7Se0.3+15wt%Te使用布里奇曼法在750度每小時5 mm的長晶速率所製備之塊才其ZT則最高可達0.84,而火花電漿燒結系統在380度50 MPa的條件下所得到的材料其ZT值則達0.8,相較於Bi1.75Sb0.25Te2.7Se0.3之樣品均有顯著提升,添加Sb與Te確實可有效提升zT值,然而當Te添加量過多,zT值不升反降,研究結果顯示Te添加量不應超過20wt%,。zh_TW
dc.description.abstract (摘要) At the start of the 21st century, energy issues have been paid attention year by year, as a potential solution for saving energy, thermoelectric materials have attracted a lot of study in the past 20 years. Among thermoelectric materials, Bi2Te3, because its maximum ZT value falls between 300 and 500 K makes it a high application potential near the room temperature range. Therefore, we are interested in if the Bi2Te3-based materials can be tuned to even improved advance. This work focused on the n-type materials Bi1.7Sb0.3Te2.7Se0.3, looking for n-type alloy bulk materials with high thermoelectric conversion efficiency by doping level tuning of Sb and Te (Sb: 0.05-0.1, Te: 15-30wt%). Meanwhile, three synthesize methods Bridgeman-Stockbarger Method, Furnace melting, spark plasma sintering (SPS) are employed to study the influence of the method on the ZT values and effects on thermoelectric properties. The prepared samples are analyzed by X-ray diffractometer (XRD) and X-ray fluorescence analyzer (XRF) for identification of crystalline phases and the atomic ratio. The ZEM-3 and LFA are employed to study the electrical conductivity and Seebeck coefficient, and thermal conductivity, respectively. Taking the Bi1.75Sb0.25Te2.7Se0.3 sample that is prepared by the pre-melting method as a reference, the material figure of merit ZT is about 0.55. While the maxima ZTs of Bi1.75Sb0.25Te2.7Se0.3+15wt%Te that prepped by the Bridgman method (growth rate of 5 mm/hr at 750 degrees) and by the spark plasma sintering system (at 380 degrees 50 MPa) are reached up to 0.84 and 0.8, respectively. Which are significantly higher than that of the Bi1.75Sb0.25Te2.7Se0.3. However, the zT suppressed at high tuning level, which indicates that the Te tuning shall not higher than 20wt%.en_US
dc.description.tableofcontents 致謝……………………………………………………………………………………i
Abstract……………………………………………………………………………ii
摘要…………………………………………………………………………………iii
目錄…………………………………………………………………………………iv
圖目錄………………………………………………………………………………vi
表目錄 ………………………………………………………………………………ix
第一章 緒論……………………………………………………………………1
1.1研究動機…………………………………………………………………………1
1.2 Bi2Te3熱電材料性質……………………………………………………………2
1.3熱電材料應用……………………………………………………………………5
第二章 熱電基本原理……………………………………………………6
2.1 席貝克效應Seebeck Effect…………………………………………………6
2.2 帕爾帖效應 Peltier Effect…………………………………………………7
2.3 湯姆森效應 Thomson Effect…………………………………………………8
2.4 席貝克係數(S) ………………………………………………………………9
2.5 熱傳系數(K) …………………………………………………………………10
2.6 電導係數(σ) ………………………………………………………………12
2.7 優質係數(ZT) ………………………………………………………………13
2.8 轉換效率………………………………………………………………………15
第三章 實驗方法與製程…………………………………………………16
3.1樣品前置作業………………………………………………………………16
3.1.1化學劑量法元素配置………………………………………………………16
3.1.2研磨…………………………………………………………………………17
3.1.3洗管…………………………………………………………………………18
3.1.4烤管…………………………………………………………………………18
3.1.5封管…………………………………………………………………………18
3.1.6氫氧焰………………………………………………………………………20
3.2樣品製程……………………………………………………………………22
3.2.1 高溫爐系統(firance) ……………………………………………………22
3.2.2 布里奇曼法(Bridgeman-Stockbarger Method) …………………………24
3.2.3 火花電漿燒結系統 (SPS) …………………………………………………27
3.2.4 鑽石切割機…………………………………………………………………29
3.3樣品量測……………………………………………………………………30
3.3.1 阿基米德密度量測…………………………………………………………30
3.3.2 LFA 閃光法熱傳導分析儀…………………………………………………31
3.3.3 Seebeck系數和電阻測試系統 (ZEM-3) …………………………………34
3.3.4 X光繞射儀(XRD) …………………………………………………………37
3.3.5 X-光螢光分析儀(XRF)……………………………………………………40
3.3.6 物理性質量測系統Physical Property Measurement System(PPMS) 42
第四章 實驗結果與討論…………………………………………………43
4.1 Bi1.7+xSb0.3-xTe2.7Se0.3+15wt%Te (x=0、0.05、0.1)之單晶樣品…43
4.1.1 Bi1.7+xSb0.3-xTe2.7Se0.3+15wt%Te (x=0、0.05、0.1) Seebeck係數比較…46
4.1.2 Bi1.7+xSb0.3-xTe2.7Se0.3+15wt%Te (x=0、0.05、0.1) 電導係數比較………47
4.1.3 Bi1.7+xSb0.3-xTe2.7Se0.3+15wt%Te (x=0、0.05、0.1) 功率因子比較………48
4.1.4 Bi1.7+xSb0.3-xTe2.7Se0.3+15wt%Te (x=0、0.05、0.1) 熱傳導係數比較……49
4.1.5 Bi1.7+xSb0.3-xTe2.7Se0.3+15wt%Te (x=0、0.05、0.1) ZT比較………………50
4.1.6 XRF比較分析………………………………………………………………51
4.1.7 XRD比較分析………………………………………………………………53
4.1.8 PPMS載子濃度………………………………………………………………55
4.2 高溫燒結系列不同Te比例Bi1.7+xSb0.3-xTe2.7Se0.3(x=0.05、0.1)之塊材…………………………………………………………………………………56
4.2.1 不同Te比例 的Bi1.75Sb0.25Te2.7Se0.3+15wt%Te Seebeck係數比較………58
4.2.2 不同Te比例 的Bi1.75Sb0.25Te2.7Se0.3+15wt%Te電導係數比較……………59
4.2.3 不同Te比例 的Bi1.75Sb0.25Te2.7Se0.3+15wt%Te 功率因子比較……………60
4.2.4 不同Te比例 的Bi1.75Sb0.25Te2.7Se0.3+15wt%Te熱傳導係數比較…………61
4.2.5 不同Te比例 的Bi1.75Sb0.25Te2.7Se0.3+15wt%Te ZT比較……………………62
4.2.6 XRD比較分析………………………………………………………………63
4.3 SPS系列不同Te比例Bi1.7+xSb0.3-xTe2.7Se0.3 (x=0.05、0.1) 塊材65
4.3.1 不同Te比例Bi1.7+xSb0.3-xTe2.7Se0.3 (x=0.05、0.1) Seebeck係數比較…67
4.3.2 不同Te比例Bi1.7+xSb0.3-xTe2.7Se0.3 (x=0.05、0.1) 電導係數比較………68
4.3.3 不同Te比例Bi1.7+xSb0.3-xTe2.7Se0.3 (x=0.05、0.1) 功率因子比較………69
4.3.4 不同Te比例Bi1.7+xSb0.3-xTe2.7Se0.3 (x=0.05、0.1) 熱傳導係數比較……70
4.3.5 不同Te比例Bi1.7+xSb0.3-xTe2.7Se0.3 (x=0.05、0.1) ZT比較………………71
第五章 結論…………………………………………………………………72
參考文獻…………………………………………………………………………75
zh_TW
dc.format.extent 6667120 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0108755012en_US
dc.subject (關鍵詞) 熱電材料zh_TW
dc.subject (關鍵詞) 化學參雜zh_TW
dc.subject (關鍵詞) 布里奇曼法zh_TW
dc.subject (關鍵詞) 火花電漿燒結zh_TW
dc.subject (關鍵詞) 碲化鉍zh_TW
dc.subject (關鍵詞) Thermoelectric materialen_US
dc.subject (關鍵詞) Chemical dopingen_US
dc.subject (關鍵詞) Bridgman-Stockbarger Methoden_US
dc.subject (關鍵詞) Spark plasma sinteringen_US
dc.subject (關鍵詞) Bismuth Tellurideen_US
dc.title (題名) Bi1.7+xSb0.3-xTe2.7Se0.3+y wt%Te x=0、0.05、0.1 y=15、20、25 熱電性質研究zh_TW
dc.title (題名) The Thermoelectric Properties Study of Bi1.7+xSb0.3-xTe2.7Se0.3+y wt%Te x=0、0.05、0.1 y=15、20、25en_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1]謝逸聆,為邁向2025非核家園目標 推動新能源政策
上網日期,105-09-17
檢自:https://www.ey.gov.tw/Page/9277F759E41CCD91/c094fb4e-6c07-4a87-9435-fb97f11dde10
[2]Pee-Yew Lee, Guo-Yang Hsu , Jing-Yi Huang, Huey-Lin Hsieh ,
Hung-Chang Hsu(2003)。Bi2Te3熱電合金塊材之製備與特性研究,台灣材料學會
[3] Фазовая диаграмма системы Bi-Te,檢自:http://www.himikatus.ru/art/phase-diagr1/Bi-Te.php
[4]陳洋元 陳正龍,熱電於再生能源之運用,2020-04-15,檢自:https://pb.ps-taiwan.org/catalog/ins.php?index_m1_id=5&index_id=548
[5] 魏百駿,導電不導熱的熱電材料新契機,2017年3月29日,檢自:http://scimonth.blogspot.com/2017/03/blog-post_4.html
[6]熱電說:聲子無非三兩闋|Ising專欄,2018-05-13,檢自:https://kknews.cc/zh-tw/science/ebroopq.html
[7] Classical and Statistical Thermodynamics (Ashley H.
Carter) 16.3 節,p296 –p301。
[8] 取材於THERMOELECTRICS HANDBOOKS—MACRO TO NANO, edited by D. M. Rowe)
[9] 氫氧焰水焊機原理,檢自http://umwelder.byethost5.com/news.html
[10]Bridgman–Stockbarger方法,檢自
:https://en.wikipedia.org/wiki/Bridgman%E2%80%93Stockbarger_method
[11]Review of Scientific Instruments 86, 023904 (2015); https://doi.org/10.1063/1.4913529
[12]汎達科技,精密切割機,檢自:https://www.pentad.com.tw/product/41
[13]全拓科技有限公司,NETZSCH LFA 457 閃光法熱擴散熱傳導分析儀 說明影片,2014年1月28日,檢自:https://www.youtube.com/watch?v=POrSr9sC_qA
[14]NETZSCH Group,Laser Flash Apparatus,檢自:https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/lfa-457-microflash/
[15] NETZSCH Group,Principle of the LFA Method,
檢自:https://www.netzsch-thermal-analysis.com/en/landing-pages/principle-of-the-lfa-method/
[16] 四端點測量技術,2014年5月5日,檢自
:https://zh.wikipedia.org/wiki/%E5%9B%9B%E7%AB%AF%E7%82%B9%E6%B5%8B%E9%87%8F%E6%8A%80%E6%9C%AF
[17]ADVANCE RIKO,Inc.,熱電特性評價裝置ZEM-3系列,檢自:https://advance-riko.com/zh-hans/products/zem-3/
[18]檢自:https://www.malvernpanalytical.com/en/products/product-range/empyreanrange/empyrean/?campaignid=1472123684&adgroupid=62535119892&creative=281861300634&keyword=panalytical%20empyrean%20x%20ray%20diffractometer&matchtype=e&network=g&device=c&gclid=EAIaIQobChMIivyO-46y8AIVmraWCh2YogZiEAAYASAAEgLDQvD_BwE#Overview-0
[19]阮弼群,教學設備介紹,檢自:https://mse.mcut.edu.tw/p/412-1043-968.php?Lang=zh-tw
[20]國家實驗研究院,科普講堂,檢自:
https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604
[21]利泓科技,XRF (X-ray Fluorescence Spectrometer)光譜分析原理,2017年,檢自:https://www.rightek.com.tw/product_detail.php?id=183
[22] Quantum Design 中國子公司,2012年09月,綜合物性測量系統(PPMS)產品說明手冊,美國: Quantum Design 公司。
[23] Bin Zhu, Energy Environ. Sci., 2020, 13, 2106,
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202101332en_US