學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 股票市場與ESG報酬之動態分析:馬可夫狀態轉換回歸法之應用
Dynamic Approach to Equity Markets’ Index and ESG Return: An Application of Markov Regime Switch Regression Method
作者 陳華恩
Tan, Timothy Hwa En
貢獻者 林月雲<br>吳啟銘
Lin, Yeh-Yun<br>Wu, Chi-Ming
陳華恩
Tan, Timothy Hwa En
關鍵詞 企業社會責任
永續發展
責任投資
資產定價
市場效率
ESG
CSR
Responsible Investment
Asset Pricing
Information and Market Efficiency
日期 2021
上傳時間 1-十一月-2021 12:15:23 (UTC+8)
摘要 摘要

本研究就股票市場平均超額報酬(α)與風險因子(β)於景氣與市場循環下所產生的結構性變異(heteroscedasticity)進行深究,並以動態馬可夫狀態轉換回歸法(Markov Regimes Switch Regression Method)取代過往線性回歸法(Ordinary Least Squares Regression method)用於資本資產定價模型(Capital Asset Pricing Model)及因子模型(Risk Factor Model)上,藉由非線性模型客觀的狀態轉換來觀察不同期間超額報酬與相關風險因子的改變。 從市場效率假說(Efficient Market Hypothesis)的角度,高效率的市場應伴隨著趨近於零的超額報酬率,惟本研究的結果卻是指出,當市場結構有所改變時,超額報酬與風險因子亦隨其變動,故,即便長期是依循市場效率假說,但是,伴隨景氣循環,不同風險因子的改變也會讓超額報酬有所改變。

不同於以往的文獻方法,本研究並不額外使用更多的變數,僅藉由馬可夫狀態轉換回歸法乃係「狀態依循(regime-dependent nature」)的特性來檢視傳統變數於不同市場循環(狀態)下的可能改變。 不同於其他時間序列分析(Time-Series Analysis)方法,如:自我回歸模型(autoregressive conditional heteroscedasticity)、門檻回歸模型(Threshold Regression Model)等,動態馬可夫狀態轉換回歸法有著讓允讓「狀態」可連續改變,並依照內生變數而決定所屬「狀態」的特性。

本研究透過動態馬可夫狀態轉換回歸法從時間序列資料中捕捉到動能因子(momentum factor)在不同市場循環階段中的反轉,即是由正轉為負或是由副轉回正,此外其他因子不同市場都有著類似的情況,並此結果具備統計上的顯著性。 此發現,在動能因子的部分與學者Daniel and Moskowitz (2016)等有類似結論,惟本研究乃是以不同方法探知同樣結果。 另外在其他因子依循市場循環而改變的部分,為Fama and French (2020)主張「價值因子」並未於美國市場消失提出另一個方向的論證,茲因為市場狀態的轉換也伴隨價值因子由正轉負而故讓長期平均失去統計上的顯著性。

本研究另外就ESG投資,也以動態馬可夫狀態轉換回歸法改良的資本資產定價模型及因子模型進行分析,確認ESG投資也因著市場狀態的改變而有著不明確的超額報酬。 如,以傳統線性回歸法使用CAPM及其他因子模型,於美國、日本及亞太市場都有著「負報酬」的統計顯著績效,惟當以動態馬可夫狀態轉換回歸法進行分析時,顯著性的「負報酬」往往僅發生在一特定的市場狀態循環下,而另一市場狀態下則是沒有達到統計顯著的報酬。 若以美國KLD指數為例,(最長期數據),其僅在一特定時期(狀態)內才會有著統計顯著的負報酬狀況產生,而此時期僅維持約一個月,相較於其他期間(狀態),ESG投資有著不亞於大盤的績效。

總結,不同於Lins et al. (2017)等學者指出ESG投資僅於金融風暴下,基於市場對於公司的信任(social trust)而產生的超額報酬,本研究結果顯示ESG投資也受到市場狀態循環的影響,風險因子與超額報酬都會依隨市場狀態而有些許改變,故投資於高ESG評價公司的策略應被視為另一種投資風格,或是另一種Smart Beta策略,宜從投資組合角度作為可降低投資風險同時提升投資報酬率的策略性工具使用。
Abstract

This dissertation demonstrates the heteroscedasticity of mean excess returns (alpha) and risk factors (betas) in the stock market by extending dynamic Markov regime-switching regression (MRSR) to the capital asset pricing model and risk factor model to replace the ordinary least squares (OLS) regression approach. The nonlinearity of abnormal returns indicates that even stock markets in developed countries are in a semistrong efficient form in which a certain period of excess returns is possible. However, when market conditions change, marked by a regime switch, excess returns and risk factors change.

The regime-dependent nature of alpha and betas allows for an alternative approach to examining the change in risk factor premiums over time. Instead of using additional variables, such as short-term and long-term reversal, to examine the impact of momentum on portfolios and the changes in risk factor premiums over time, this paper adds a market regime-switching mechanism to risk factor models. Dynamic MRSR is fundamentally different from other time-series techniques, such as autoregressive conditional heteroscedasticity and threshold regression, which allow for a continuous (but irreversible) regime change. Dynamic MRSR advances the regime-switching mechanism, and endogenous probabilistic conditions determine the switch between regimes (the model determines which regime another regime should be switched according to the Markov chain property).

This dissertation documents momentum reversal under various market conditions (regimes), whereby momentum betas and other risk factors change from positive to negative or vice versa in a statistically significant manner. The results support those of studies on momentum crashes by Daniel and Moskowitz (2016) and others. This study also provides evidence that the worldwide issue of diminishing value premiums is regime-dependent, which supports Fama and French (2020) in that the variation in value premium is too large to confirm its disappearance.

When examining excess returns from ESG investment, traditional CAPM, and other risk factor models when applied with OLS, most of the time would yield a negative result in the US, Japan, and the Asia Pacific; however, when applying MRSR, it is evident that negative excess return is only statistically significant in the specific regime, but not in others regime. KLD (the U.S. Market) is the most extended available dataset globally, and the time probability results suggest only a month or so, during an economic recession, that KLD is underperformed the market index in a statistical significant manner.

In conclusion, this paper provides evidence that the benefits of responsible investment are not limited to small excess returns during financial crises (the benefit of social capital trust reduces a firm’s sensitivity to stock market downturns), as suggested by Lins et al. (2017) and others. Although the benefits of environmental, social, and governance (ESG) factors are small, and those excess returns are sensitive to market risk are regime-dependent and persist through economic crises. The results suggest that investing in firms with high ESG scores (consistent with corporate social responsibility theory) is beneficial from the perspective of investment portfolio construction because responsible investments are not related to the performance of the broad market and occasionally outperform the market.

The heteroscedasticity of alpha and betas warrants further research to develop investment portfolio construction techniques because the assumed homoscedasticity of assets’ expected means and variance does not yield optimized returns.
參考文獻 9.0 References
Ahern Kenneth (2009). “Sample selection and event study estimation,” Journal of Empirical Finance 16(3):466-482.

Allen Goss and Gordon S. Roberts, “The impact of corporate social responsibility on the cost of bank loans,” Journal of Banking and Finance, July 2011, Volume 35, Number 7, pp. 1794–810.

Armitage Seth (1995). “Event Study Methods and Evidence on Their Performance,” Journal of Economic Surveys 9 (1): 25-52

Asness Cliff (2014.12.17). “Our Model Goes to Six and Saves Value From Redundancy Along the Way”, AQR: https://www.aqr.com/Insights/Perspectives/Our-Model-Goes-to-Six-and-Saves-Value-From-Redundancy-Along-the-Way (access date:2021. 06.15)

Barberis, N; Shleifer A; Vishny R (1998). "A Model of Investor Sentiment." Journal of Financial Economics. 49 (49): 307–343

Binder John (1998). “The Event Study Methodology since 1969”, Review of Quantitative Finance and Accounting, 11:111-137

Blanco Belen (2012). The use of CAPM and Fama and French Three-Factor
Model: portfolios selection. Public and Municipal Finance, 1(2):61-70

Bogle, John C (1999). Common Sense on Mutual Funds: New Imperatives for the Intelligent Investor, John Wiley & Sons

Brown S. and Warner J. (1985). “Using daily stock returns: The case of event studies”, Journal of Financial Economics, 14(1):3-31



Daniel, K; Hirschleifer D; Subrahmanyam A (1998). "A Theory of Overconfidence, Self-Attribution, and Security Market Under and Over-reactions". Journal of Finance 53:1839-1885

Daniel Kent and Moskowitz J. Tobias (2016), “Momentum Crashes”, Journal of Financial Economics, 122(2): 221-247.

Davidson, James (2004). “Forecasting Markov-switching Dynamic, Conditionally Heteroscedastic Processes,” Statistics & Probability Letters, 68, 137-147.

Diebold, Francis X., Lee, Joon-Haeng, and Gretchen C. Weinbach (1994). “Regime Switching with Time-Varying Transition Probabilities,” in C. Hargreaves (ed.), Nonstationary Time Series Analysis and Cointegration, Oxford: Oxford University Press, 283–302.

Engle, Robert F. (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation." Econometrica. 50 (4): 987–1007.

Fama and French, (1992). “The Cross-Section of Expected Stock Returns,” Journal of Finance. June 1992:427-465

Fama, E. F.; French, K. R. (1993). "Common risk factors in the returns on stocks and bonds." Journal of Financial Economics. 33: 3–56.

Fama, E. F.; French, K. R. (2012) "Size, Value, and Momentum in International Stock Returns", Journal of Financial Economics. 105(3):457-472

Fama and French (2015). “A Five-Factor Asset Pricing Model,” Journal of Financial Economics. 116: 1–22.

Fama and French (2015), “International Tests of a Five-Factor Asset Pricing Model,” Tuck School of Business Working Paper No. 2622782

Fama and French (2019), “Comparing Cross-Section and Time-Series Factor Models”, The Review of Financial Studies (2020 May), 33(5):1891-1926

Fama and French (2020), “Value Premium”, Chicago Both Paper No. 20-01
Filardo, Andrew J. (1994). “Business-Cycle Phases and Their Transitional Dynamics,” Journal of Business & Economic Statistics, 12, 299-308.

Frühwirth-Schnatter, Sylvia (2006). Finite Mixture and Markov Switching Models, New York: Springer Science+ Business Media LLC.

French, Craig W. (2003). "The Treynor Capital Asset Pricing Model". Journal of Investment Management 1 (2): 60–72.

Goldfeld, Stephen M. and Richard E. Quandt (1973). “A Markov Model for Switching Regressions,” Journal of Econometrics, 1(1):3–15.

Goldfeld, Stephen M. and Richard E. Quandt (1976), Studies in Nonlinear Estimation, Cambridge, MA: Ballinger Publishing Company.

Goss and Roberts (2011), “The Impact of Corporate Social Responsibility on the Cost of Banks Loans,” Journal of Banking and Finance 35(7): 1794-1810

Gunnar Friede et al., “ESG and financial performance: aggregated evidence from more than 2000 empirical studies,” Journal of Sustainable Finance & Investment, October 2015, Volume 5, Number 4, pp. 210–33

Hamilton, James D. (1989). “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle,” Econometrica, 57, 357–384.

Hamilton, James D. (1990). “Analysis of Time Series Subject to Changes in Regime,” Journal of Econometrics, 45, 39–70.


Hamilton, James D. (1994). Time Series Analysis, Chapter 22, Princeton: Princeton University Press.

Hamilton, James D. (1996). “Specification Testing in Markov-switching Time-series Models,” Journal of Econometrics, 70, 127–157.

Hansen, B. E. (1992). “The Likelihood Ratio Test Under Nonstandard Conditions: Testing the Markov Switching Model of GNP,” Journal of Applied Econometrics, 7, S6–S82.

Henisz and McGlinch (2019), “ESG, Material Credit Events, and Credit Risk,” Journal of Applied Corporate Finance 31:105-117

Juan Carlos Matallín-Sáez, Amparo Soler-Domínguez, Diego Víctor de Mingo-López, and Emili Tortosa-Ausina (2018), “Does socially responsible mutual fund performance vary over the business cycle? New insights on the effect of idiosyncratic SR features,” Business Ethics, A European Review (Business Ethics: Environment & Responsibility), 28(1):71-98

Kim, Chang-Jin (1994). “Dynamic Linear Models with Markov-Switching,” Journal of Econometrics, 60, 1–22.

Kim, Chang-Jin and Charles R. Nelson (1999). State-Space Models With Regime Switching, Cambridge: The MIT Press.

Krolzig, Hans-Martin (1997). Markov-Switching Vector Autoregressions: Modelling, Statistical Inference, and Application to Business Cycle Analysis, Berlin: Springer-Verlag.

Khan, Serafeim, and Yoon (2016), “Corporate Sustainability: First Evidence on Materiality,” Accounting Review 91(6):1697-1724

Kuan, Chung-Ming (2002), “Lecture on the Markov Switching Model,” Lecture Note, Institute of Economics, Academia Sinica.

Lins V. Karl, Servaes Henri, and Tamayo Ane (2017), “Social Capital Trust, and Fire Performance: The Value of Corporate Social Responsibility during the Financial Crisis,” The Journal of Finance, 72(4):1785-1824.

Li, Jun (2014), “Explaining Momentum and Value Simultaneously”. (September 8, 2014) Available at SSRN: https://ssrn.com/abstract=2179656

Low, R.K.Y.; Tan, E. (2016). "The Role of Analysts` Forecasts in the Momentum Effect." International Review of Financial Analysis, 48: 67–84

Maddala, G. S. (1986). “Disequilibrium, Self-Selection, and Switching Models,” Handbook of Econometrics, Chapter 28 in Z. Griliches & M. D. Intriligator (eds.), Handbook of Econometrics, Volume 3, Amsterdam: North-Holland.

Maheu, John M., and Thomas H. McCurdy (2000). “Identifying Bull and Bear Markets in Stock Returns,” Journal of Business & Economic Statistics, 18, 100–112.

Malkiel, Burton G. Malkiel (2015). A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Eleventh Edition), W. W. Norton & Company

McKinsey & Company (2009). “McKinsey Global Survey Results: Valuing corporate social responsibility.”

McKinsey & Company (2020). “The ESG premium: New perspectives on value and performance.”

McKinsey & Company (2020). Valuation: Measuring and Managing the Value of Companies (7th edition), Wiley & Sons.

Mozaffar Khan, George Serafeim, and Aaron Yoon, “Corporate sustainability: First evidence on materiality,” The Accounting Review, November 2016, Volume 91, Number 6, pp. 1697–724.
Nagy, Kassam and Lee (2015), “Can ESG Add Alpha? An Analysis of ESG Tilt and Momentum Strategies,” whitepaper, MSCI.

Shiller, Robert. (2003), “From Efficient Markets Theory to Behavioral Finance,” Journal of Economic Perspectives, 17(1), pp. 83-104.

Shiller, Robert (2005), Irrational Exuberance, New York, NY: Princeton University Press.

Sara A. Lundqvist and Anders Vilhelmsson, “Enterprise risk management and default risk: Evidence from the banking industry,” Journal of Risk and Insurance, March 2018, Volume 85, Number 1, pp. 127–57.

Smith, Daniel R. (2008), “Evaluating Specification Tests for Markov-switching Time-series Models,” Journal of Time Series Analysis, 29, 629–652.

Meir Statman & Denys Glushkov (2009), “The Wages of Social Responsibility,” Financial Analysts Journal, 65:4, 33-46

Sung C. Bae, Kiyoung Chang, and Ha-Chin Yi, “The impact of corporate social responsibility activities on corporate financing: A case of bank loan covenants,” Applied Economics Letters, February 2016, Volume 23, Number 17, pp. 1234–37,

Sung C. Bae, Kiyoung Chang, and Ha-Chin Yi, “Corporate social responsibility, credit rating, and private debt contracting: New evidence from syndicated loan market,” Review of Quantitative Finance and Accounting, January 2018, Volume 50, Number 1, pp. 261–99.

Witold J. Henisz and James McGlinch, “ESG, material credit events, and credit risk,” Journal of Applied Corporate Finance, July 2019, Volume 31, pp. 105–17.


Zoltán Nagy, Altaf Kassam, and Linda-Eling Lee, “Can ESG add alpha? An analysis of ESG tilt and momentum strategies,” Journal of Investing, Summer 2015, Volume 25, Number 2, pp. 113–24
描述 博士
國立政治大學
亞太研究英語博士學位學程(IDAS)
98265509
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0098265509
資料類型 thesis
dc.contributor.advisor 林月雲<br>吳啟銘zh_TW
dc.contributor.advisor Lin, Yeh-Yun<br>Wu, Chi-Mingen_US
dc.contributor.author (作者) 陳華恩zh_TW
dc.contributor.author (作者) Tan, Timothy Hwa Enen_US
dc.creator (作者) 陳華恩zh_TW
dc.creator (作者) Tan, Timothy Hwa Enen_US
dc.date (日期) 2021en_US
dc.date.accessioned 1-十一月-2021 12:15:23 (UTC+8)-
dc.date.available 1-十一月-2021 12:15:23 (UTC+8)-
dc.date.issued (上傳時間) 1-十一月-2021 12:15:23 (UTC+8)-
dc.identifier (其他 識別碼) G0098265509en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/137719-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 亞太研究英語博士學位學程(IDAS)zh_TW
dc.description (描述) 98265509zh_TW
dc.description.abstract (摘要) 摘要

本研究就股票市場平均超額報酬(α)與風險因子(β)於景氣與市場循環下所產生的結構性變異(heteroscedasticity)進行深究,並以動態馬可夫狀態轉換回歸法(Markov Regimes Switch Regression Method)取代過往線性回歸法(Ordinary Least Squares Regression method)用於資本資產定價模型(Capital Asset Pricing Model)及因子模型(Risk Factor Model)上,藉由非線性模型客觀的狀態轉換來觀察不同期間超額報酬與相關風險因子的改變。 從市場效率假說(Efficient Market Hypothesis)的角度,高效率的市場應伴隨著趨近於零的超額報酬率,惟本研究的結果卻是指出,當市場結構有所改變時,超額報酬與風險因子亦隨其變動,故,即便長期是依循市場效率假說,但是,伴隨景氣循環,不同風險因子的改變也會讓超額報酬有所改變。

不同於以往的文獻方法,本研究並不額外使用更多的變數,僅藉由馬可夫狀態轉換回歸法乃係「狀態依循(regime-dependent nature」)的特性來檢視傳統變數於不同市場循環(狀態)下的可能改變。 不同於其他時間序列分析(Time-Series Analysis)方法,如:自我回歸模型(autoregressive conditional heteroscedasticity)、門檻回歸模型(Threshold Regression Model)等,動態馬可夫狀態轉換回歸法有著讓允讓「狀態」可連續改變,並依照內生變數而決定所屬「狀態」的特性。

本研究透過動態馬可夫狀態轉換回歸法從時間序列資料中捕捉到動能因子(momentum factor)在不同市場循環階段中的反轉,即是由正轉為負或是由副轉回正,此外其他因子不同市場都有著類似的情況,並此結果具備統計上的顯著性。 此發現,在動能因子的部分與學者Daniel and Moskowitz (2016)等有類似結論,惟本研究乃是以不同方法探知同樣結果。 另外在其他因子依循市場循環而改變的部分,為Fama and French (2020)主張「價值因子」並未於美國市場消失提出另一個方向的論證,茲因為市場狀態的轉換也伴隨價值因子由正轉負而故讓長期平均失去統計上的顯著性。

本研究另外就ESG投資,也以動態馬可夫狀態轉換回歸法改良的資本資產定價模型及因子模型進行分析,確認ESG投資也因著市場狀態的改變而有著不明確的超額報酬。 如,以傳統線性回歸法使用CAPM及其他因子模型,於美國、日本及亞太市場都有著「負報酬」的統計顯著績效,惟當以動態馬可夫狀態轉換回歸法進行分析時,顯著性的「負報酬」往往僅發生在一特定的市場狀態循環下,而另一市場狀態下則是沒有達到統計顯著的報酬。 若以美國KLD指數為例,(最長期數據),其僅在一特定時期(狀態)內才會有著統計顯著的負報酬狀況產生,而此時期僅維持約一個月,相較於其他期間(狀態),ESG投資有著不亞於大盤的績效。

總結,不同於Lins et al. (2017)等學者指出ESG投資僅於金融風暴下,基於市場對於公司的信任(social trust)而產生的超額報酬,本研究結果顯示ESG投資也受到市場狀態循環的影響,風險因子與超額報酬都會依隨市場狀態而有些許改變,故投資於高ESG評價公司的策略應被視為另一種投資風格,或是另一種Smart Beta策略,宜從投資組合角度作為可降低投資風險同時提升投資報酬率的策略性工具使用。
zh_TW
dc.description.abstract (摘要) Abstract

This dissertation demonstrates the heteroscedasticity of mean excess returns (alpha) and risk factors (betas) in the stock market by extending dynamic Markov regime-switching regression (MRSR) to the capital asset pricing model and risk factor model to replace the ordinary least squares (OLS) regression approach. The nonlinearity of abnormal returns indicates that even stock markets in developed countries are in a semistrong efficient form in which a certain period of excess returns is possible. However, when market conditions change, marked by a regime switch, excess returns and risk factors change.

The regime-dependent nature of alpha and betas allows for an alternative approach to examining the change in risk factor premiums over time. Instead of using additional variables, such as short-term and long-term reversal, to examine the impact of momentum on portfolios and the changes in risk factor premiums over time, this paper adds a market regime-switching mechanism to risk factor models. Dynamic MRSR is fundamentally different from other time-series techniques, such as autoregressive conditional heteroscedasticity and threshold regression, which allow for a continuous (but irreversible) regime change. Dynamic MRSR advances the regime-switching mechanism, and endogenous probabilistic conditions determine the switch between regimes (the model determines which regime another regime should be switched according to the Markov chain property).

This dissertation documents momentum reversal under various market conditions (regimes), whereby momentum betas and other risk factors change from positive to negative or vice versa in a statistically significant manner. The results support those of studies on momentum crashes by Daniel and Moskowitz (2016) and others. This study also provides evidence that the worldwide issue of diminishing value premiums is regime-dependent, which supports Fama and French (2020) in that the variation in value premium is too large to confirm its disappearance.

When examining excess returns from ESG investment, traditional CAPM, and other risk factor models when applied with OLS, most of the time would yield a negative result in the US, Japan, and the Asia Pacific; however, when applying MRSR, it is evident that negative excess return is only statistically significant in the specific regime, but not in others regime. KLD (the U.S. Market) is the most extended available dataset globally, and the time probability results suggest only a month or so, during an economic recession, that KLD is underperformed the market index in a statistical significant manner.

In conclusion, this paper provides evidence that the benefits of responsible investment are not limited to small excess returns during financial crises (the benefit of social capital trust reduces a firm’s sensitivity to stock market downturns), as suggested by Lins et al. (2017) and others. Although the benefits of environmental, social, and governance (ESG) factors are small, and those excess returns are sensitive to market risk are regime-dependent and persist through economic crises. The results suggest that investing in firms with high ESG scores (consistent with corporate social responsibility theory) is beneficial from the perspective of investment portfolio construction because responsible investments are not related to the performance of the broad market and occasionally outperform the market.

The heteroscedasticity of alpha and betas warrants further research to develop investment portfolio construction techniques because the assumed homoscedasticity of assets’ expected means and variance does not yield optimized returns.
en_US
dc.description.tableofcontents TABLE OF CONTENTS
1.0 INTRODUCTION 1
1.1 OBJECTIVE OF THIS RESEARCH 3
1.2 OVERVIEW OF RESPONSIBLE INVESTMENT 5
2.0 LITERATURES REVIEW 7
2.1 MOMENTUM FACTOR AND DIMINISHING VALUE PREMIUM 8
3.0 METHODOLOGY 10
3.1 CAPM 10
3.3 CARHART’S CHALLENGE 11
3.4 FAMA-FRENCH FIVE-FACTOR MODEL 12
3.5 REGIME SWITCHING REGRESSION 13
3.6 HYPOTHESIS FOR MARKOV SWITCHING REGRESSION (2-REGIMES) 16
3.7 HYPOTHESIS FOR MARKOV REGIME SWITCHING REGRESSION (3-REGIMES) 18
Expected excess returns: 19
→ Bear regime 19
Time→ Bear regime 19
Time 19
Time 19
4.0 EMPIRICAL RESULTS FROM THE US. MARKET 20
4.1 USA DATA 20
4.2 EMPIRICAL TESTING FOR THE USA MARKET 29
4.2.1 THE GRAPHICAL APPROACH 30
4.2.2 SIMPLE EQUALITY TEST 32
4.2.3 COMPARISON WITH RISK MODELS: OLS VS. MRSR 36
4.3 EMPIRICAL TESTING FOR RIS IN USA MARKET 46
4.3.1 THE GRAPHICAL APPROACH 46
4.3.2 SIMPLE EQUALITY TEST 52
4.3.3 COMPARISON WITH RISK MODELS: OLS VS. MRSR 55
5.0 EMPIRICAL RESULTS FROM JAPAN 70
5.1 DATA FOR JAPANESE MARKET 70
5.2 EMPIRICAL TESTING FOR THE JAPAN MARKET 81
5.2.1 THE GRAPHICAL APPROACH 81
5.2.2 SIMPLE EQUALITY TEST 84
5.2.3 COMPARISON WITH RISK MODELS: OLS VS. MRSR 87
5.3 EMPIRICAL TESTING FOR RIS IN JAPAN MARKET 91
5.3.1 THE GRAPHICAL APPROACH 91
5.3.2 SIMPLE EQUALITY TEST 95
5.3.3 COMPARISON WITH RISK MODELS: OLS VS. MRSR 98
6.0 EMPIRICAL RESULTS FROM ASIA PACIFIC EXCLUDING JAPAN 107
6.1 DATA FOR ASIA PACIFIC (EXCLUDING JAPAN) MARKET 107
6.2 EMPIRICAL TESTING FOR THE ASIA PACIFIC (EX. JAPAN) MARKET 115
6.2.1 THE GRAPHICAL APPROACH 115
6.2.2 SIMPLE EQUALITY TEST FOR ASIA PACIFIC (EX. JAPAN) MARKET’S EXCESS RETURN 117
6.2.3 COMPARISON WITH RISK MODELS: OLS VS. MRSR 120
6.3 EMPIRICAL TESTING FOR RIS IN ASIA PACIFIC (EX. JAPAN) MARKET 124
6.3.1 THE GRAPHICAL APPROACH 125
6.3.2 SIMPLE EQUALITY TEST 127
6.3.3 COMPARISON WITH RISK MODELS: OLS VS. MRSR 130
7.0 EMPIRICAL RESULTS FROM EUROPE 133
7.1 DATA FOR EUROPE MARKET 133
7.2 EMPIRICAL TESTING FOR THE EUROPE MARKET 141
7.2.1 THE GRAPHICAL APPROACH 142
7.2.2 SIMPLE EQUALITY TEST FOR EUROPE MARKET’S EXCESS RETURN 144
7.2.3 COMPARISON WITH RISK MODELS: OLS VS. MRSR 147
7.3 EMPIRICAL TESTING FOR RIS IN EUROPE MARKET 151
7.3.1 THE GRAPHICAL APPROACH 151
7.3.2 SIMPLE HYPOTHESIS TESTING 154
7.3.3 COMPARISON WITH RISK MODELS: OLS VS. MRSR 155
8.0 CONCLUSIONS AND IMPLICATIONS 158
9.0 REFERENCES 162
zh_TW
dc.format.extent 4588501 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0098265509en_US
dc.subject (關鍵詞) 企業社會責任zh_TW
dc.subject (關鍵詞) 永續發展zh_TW
dc.subject (關鍵詞) 責任投資zh_TW
dc.subject (關鍵詞) 資產定價zh_TW
dc.subject (關鍵詞) 市場效率zh_TW
dc.subject (關鍵詞) ESGen_US
dc.subject (關鍵詞) CSRen_US
dc.subject (關鍵詞) Responsible Investmenten_US
dc.subject (關鍵詞) Asset Pricingen_US
dc.subject (關鍵詞) Information and Market Efficiencyen_US
dc.title (題名) 股票市場與ESG報酬之動態分析:馬可夫狀態轉換回歸法之應用zh_TW
dc.title (題名) Dynamic Approach to Equity Markets’ Index and ESG Return: An Application of Markov Regime Switch Regression Methoden_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 9.0 References
Ahern Kenneth (2009). “Sample selection and event study estimation,” Journal of Empirical Finance 16(3):466-482.

Allen Goss and Gordon S. Roberts, “The impact of corporate social responsibility on the cost of bank loans,” Journal of Banking and Finance, July 2011, Volume 35, Number 7, pp. 1794–810.

Armitage Seth (1995). “Event Study Methods and Evidence on Their Performance,” Journal of Economic Surveys 9 (1): 25-52

Asness Cliff (2014.12.17). “Our Model Goes to Six and Saves Value From Redundancy Along the Way”, AQR: https://www.aqr.com/Insights/Perspectives/Our-Model-Goes-to-Six-and-Saves-Value-From-Redundancy-Along-the-Way (access date:2021. 06.15)

Barberis, N; Shleifer A; Vishny R (1998). "A Model of Investor Sentiment." Journal of Financial Economics. 49 (49): 307–343

Binder John (1998). “The Event Study Methodology since 1969”, Review of Quantitative Finance and Accounting, 11:111-137

Blanco Belen (2012). The use of CAPM and Fama and French Three-Factor
Model: portfolios selection. Public and Municipal Finance, 1(2):61-70

Bogle, John C (1999). Common Sense on Mutual Funds: New Imperatives for the Intelligent Investor, John Wiley & Sons

Brown S. and Warner J. (1985). “Using daily stock returns: The case of event studies”, Journal of Financial Economics, 14(1):3-31



Daniel, K; Hirschleifer D; Subrahmanyam A (1998). "A Theory of Overconfidence, Self-Attribution, and Security Market Under and Over-reactions". Journal of Finance 53:1839-1885

Daniel Kent and Moskowitz J. Tobias (2016), “Momentum Crashes”, Journal of Financial Economics, 122(2): 221-247.

Davidson, James (2004). “Forecasting Markov-switching Dynamic, Conditionally Heteroscedastic Processes,” Statistics & Probability Letters, 68, 137-147.

Diebold, Francis X., Lee, Joon-Haeng, and Gretchen C. Weinbach (1994). “Regime Switching with Time-Varying Transition Probabilities,” in C. Hargreaves (ed.), Nonstationary Time Series Analysis and Cointegration, Oxford: Oxford University Press, 283–302.

Engle, Robert F. (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation." Econometrica. 50 (4): 987–1007.

Fama and French, (1992). “The Cross-Section of Expected Stock Returns,” Journal of Finance. June 1992:427-465

Fama, E. F.; French, K. R. (1993). "Common risk factors in the returns on stocks and bonds." Journal of Financial Economics. 33: 3–56.

Fama, E. F.; French, K. R. (2012) "Size, Value, and Momentum in International Stock Returns", Journal of Financial Economics. 105(3):457-472

Fama and French (2015). “A Five-Factor Asset Pricing Model,” Journal of Financial Economics. 116: 1–22.

Fama and French (2015), “International Tests of a Five-Factor Asset Pricing Model,” Tuck School of Business Working Paper No. 2622782

Fama and French (2019), “Comparing Cross-Section and Time-Series Factor Models”, The Review of Financial Studies (2020 May), 33(5):1891-1926

Fama and French (2020), “Value Premium”, Chicago Both Paper No. 20-01
Filardo, Andrew J. (1994). “Business-Cycle Phases and Their Transitional Dynamics,” Journal of Business & Economic Statistics, 12, 299-308.

Frühwirth-Schnatter, Sylvia (2006). Finite Mixture and Markov Switching Models, New York: Springer Science+ Business Media LLC.

French, Craig W. (2003). "The Treynor Capital Asset Pricing Model". Journal of Investment Management 1 (2): 60–72.

Goldfeld, Stephen M. and Richard E. Quandt (1973). “A Markov Model for Switching Regressions,” Journal of Econometrics, 1(1):3–15.

Goldfeld, Stephen M. and Richard E. Quandt (1976), Studies in Nonlinear Estimation, Cambridge, MA: Ballinger Publishing Company.

Goss and Roberts (2011), “The Impact of Corporate Social Responsibility on the Cost of Banks Loans,” Journal of Banking and Finance 35(7): 1794-1810

Gunnar Friede et al., “ESG and financial performance: aggregated evidence from more than 2000 empirical studies,” Journal of Sustainable Finance & Investment, October 2015, Volume 5, Number 4, pp. 210–33

Hamilton, James D. (1989). “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle,” Econometrica, 57, 357–384.

Hamilton, James D. (1990). “Analysis of Time Series Subject to Changes in Regime,” Journal of Econometrics, 45, 39–70.


Hamilton, James D. (1994). Time Series Analysis, Chapter 22, Princeton: Princeton University Press.

Hamilton, James D. (1996). “Specification Testing in Markov-switching Time-series Models,” Journal of Econometrics, 70, 127–157.

Hansen, B. E. (1992). “The Likelihood Ratio Test Under Nonstandard Conditions: Testing the Markov Switching Model of GNP,” Journal of Applied Econometrics, 7, S6–S82.

Henisz and McGlinch (2019), “ESG, Material Credit Events, and Credit Risk,” Journal of Applied Corporate Finance 31:105-117

Juan Carlos Matallín-Sáez, Amparo Soler-Domínguez, Diego Víctor de Mingo-López, and Emili Tortosa-Ausina (2018), “Does socially responsible mutual fund performance vary over the business cycle? New insights on the effect of idiosyncratic SR features,” Business Ethics, A European Review (Business Ethics: Environment & Responsibility), 28(1):71-98

Kim, Chang-Jin (1994). “Dynamic Linear Models with Markov-Switching,” Journal of Econometrics, 60, 1–22.

Kim, Chang-Jin and Charles R. Nelson (1999). State-Space Models With Regime Switching, Cambridge: The MIT Press.

Krolzig, Hans-Martin (1997). Markov-Switching Vector Autoregressions: Modelling, Statistical Inference, and Application to Business Cycle Analysis, Berlin: Springer-Verlag.

Khan, Serafeim, and Yoon (2016), “Corporate Sustainability: First Evidence on Materiality,” Accounting Review 91(6):1697-1724

Kuan, Chung-Ming (2002), “Lecture on the Markov Switching Model,” Lecture Note, Institute of Economics, Academia Sinica.

Lins V. Karl, Servaes Henri, and Tamayo Ane (2017), “Social Capital Trust, and Fire Performance: The Value of Corporate Social Responsibility during the Financial Crisis,” The Journal of Finance, 72(4):1785-1824.

Li, Jun (2014), “Explaining Momentum and Value Simultaneously”. (September 8, 2014) Available at SSRN: https://ssrn.com/abstract=2179656

Low, R.K.Y.; Tan, E. (2016). "The Role of Analysts` Forecasts in the Momentum Effect." International Review of Financial Analysis, 48: 67–84

Maddala, G. S. (1986). “Disequilibrium, Self-Selection, and Switching Models,” Handbook of Econometrics, Chapter 28 in Z. Griliches & M. D. Intriligator (eds.), Handbook of Econometrics, Volume 3, Amsterdam: North-Holland.

Maheu, John M., and Thomas H. McCurdy (2000). “Identifying Bull and Bear Markets in Stock Returns,” Journal of Business & Economic Statistics, 18, 100–112.

Malkiel, Burton G. Malkiel (2015). A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing (Eleventh Edition), W. W. Norton & Company

McKinsey & Company (2009). “McKinsey Global Survey Results: Valuing corporate social responsibility.”

McKinsey & Company (2020). “The ESG premium: New perspectives on value and performance.”

McKinsey & Company (2020). Valuation: Measuring and Managing the Value of Companies (7th edition), Wiley & Sons.

Mozaffar Khan, George Serafeim, and Aaron Yoon, “Corporate sustainability: First evidence on materiality,” The Accounting Review, November 2016, Volume 91, Number 6, pp. 1697–724.
Nagy, Kassam and Lee (2015), “Can ESG Add Alpha? An Analysis of ESG Tilt and Momentum Strategies,” whitepaper, MSCI.

Shiller, Robert. (2003), “From Efficient Markets Theory to Behavioral Finance,” Journal of Economic Perspectives, 17(1), pp. 83-104.

Shiller, Robert (2005), Irrational Exuberance, New York, NY: Princeton University Press.

Sara A. Lundqvist and Anders Vilhelmsson, “Enterprise risk management and default risk: Evidence from the banking industry,” Journal of Risk and Insurance, March 2018, Volume 85, Number 1, pp. 127–57.

Smith, Daniel R. (2008), “Evaluating Specification Tests for Markov-switching Time-series Models,” Journal of Time Series Analysis, 29, 629–652.

Meir Statman & Denys Glushkov (2009), “The Wages of Social Responsibility,” Financial Analysts Journal, 65:4, 33-46

Sung C. Bae, Kiyoung Chang, and Ha-Chin Yi, “The impact of corporate social responsibility activities on corporate financing: A case of bank loan covenants,” Applied Economics Letters, February 2016, Volume 23, Number 17, pp. 1234–37,

Sung C. Bae, Kiyoung Chang, and Ha-Chin Yi, “Corporate social responsibility, credit rating, and private debt contracting: New evidence from syndicated loan market,” Review of Quantitative Finance and Accounting, January 2018, Volume 50, Number 1, pp. 261–99.

Witold J. Henisz and James McGlinch, “ESG, material credit events, and credit risk,” Journal of Applied Corporate Finance, July 2019, Volume 31, pp. 105–17.


Zoltán Nagy, Altaf Kassam, and Linda-Eling Lee, “Can ESG add alpha? An analysis of ESG tilt and momentum strategies,” Journal of Investing, Summer 2015, Volume 25, Number 2, pp. 113–24
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202101665en_US