dc.contributor.advisor | 陳立民 | zh_TW |
dc.contributor.advisor | Chen, Li-Ming | en_US |
dc.contributor.author (作者) | 陳泓泯 | zh_TW |
dc.contributor.author (作者) | Chen, Hung-Min | en_US |
dc.creator (作者) | 陳泓泯 | zh_TW |
dc.creator (作者) | Chen, Hung-Min | en_US |
dc.date (日期) | 2022 | en_US |
dc.date.accessioned | 1-七月-2022 16:36:23 (UTC+8) | - |
dc.date.available | 1-七月-2022 16:36:23 (UTC+8) | - |
dc.date.issued (上傳時間) | 1-七月-2022 16:36:23 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0110363057 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/140735 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 企業管理研究所(MBA學位學程) | zh_TW |
dc.description (描述) | 110363057 | zh_TW |
dc.description.abstract (摘要) | 根據資料統計,近十年來六都的平均購屋價格增加了35%,漲幅甚大,主要受到建材成本提升、工資上漲、土地取得日趨困難以及匯率和總體經濟等影響。內政部於2012年推動實價登錄政策,希望讓房屋買賣資訊更透明化以健全台灣房地產市場,由於存在部分缺失,內政部再於2021年推動實價登錄2.0,防止投機炒作導致房價泡沫化,也保障民眾購屋的權利。過去國外已有許多文獻根據房地產交易資料進行分析,在實價登錄推動後,國內也開始有眾多研究探討住宅價格預測的影響因子和使用方法,目前市場面亦有房地產公司提供相關的平台,協助民眾在購屋時有個更明確的參考,本研究將參考過去的國內外的文獻,以台南市以及台北市的房屋交易資訊為例,選定三項外在因子(區域學校數量、區域超商數量、區域綠地數量),並以類神經網路模型做為預測模型,探討在此架構下,加入此三項因子是否有助於提升房價預測的準確度,同時也探討不同的外在因子對於這兩個城市的影響程度是否相同。台南市和台北市的市區規劃、生活型態、生活機能不同,消費者在購屋考量的點也會有所差異,經研究結果發現,並非加入所有外在因子對於預測準確度的提升帶來最大的幫助,以台南市來說,加入區域超商數量、區域綠地數量此兩項變數對於模型預測準確度的提升效果較好;以台北市來說,加入區域超商數量、區域學校數量此兩項變數對於模型預測準確度的提升效果較好。 | zh_TW |
dc.description.abstract (摘要) | The average house transaction price in the six main cities has increased by 35% in past ten years, considering the increase in the cost of building material, wage, the difficulty to acquire land, and the affect from exchange rates and Marco Economy.The policy of “Actual Price Registration of Real Estate Transactions” was promoted by The Ministry of the Interior in 2012, hoping to decrease the information asymmetry and hence improve the real estate market in Taiwan. In 2021, in order to prevent speculation from resulting the real-estate bubble, The Ministry of the Interior push the policy to 2.0 by adding more mechanisms which protects people’s right to purchase real estate.There are many literatures with the topics regarding real-estate transaction data. After the announcement of above policy, many domestic academics started to study the critical factors that may affect the house price. Some real-estate companies also start to provide the service for house price prediction which could be a reference for buyers. This study uses neural network as the prediction model to verify which external factors: the regional amount of school, the regional amount of convenient store, the regional amount of green area will be more critical that can enhance the performance of prediction tasks in Tainan and Taipei City.In addition, This study verifies whether the same factor can bring the same influence to different city.The result finds not all external factors added to the model can bring the best performance. To Tainan, adding the factors: regional amount of convenient store and the regional amount of green area can efficiently enhance the prediction accuracy. To Taipei, adding the factors: the regional amount of school, the regional amount of convenient store can efficiently enhance the prediction accuracy. | en_US |
dc.description.tableofcontents | 謝辭 I摘要 IIAbstract III目次 IV圖次 V表次 VI第一章 緒論 11.1 研究背景與動機 11.2 研究目的 41.3 研究範圍 51.4 研究流程 5第二章 文獻探討 72.1 房屋特徵影響房價相關研究 72.2 外在環境因子影響房價相關研究 92.2.1 和「學校」因子有關之研究 92.2.2 和「超商」因子有關之研究 92.2.3 和「綠地」因子有關之研究 102.3 特徵價格理論應用 112.4 機器學習相關應用 122.5 小結 13第三章 研究方法 153.1 資料蒐集 153.2 資料探索與預處理 153.3 機器學習 163.3.1 機器學習種類 163.3.2 類神經網路原理及應用 163.3.3 倒傳神經網路 193.4 交叉驗證法 223.5 衡量指標 23第四章 資料與統計分析 264.1 資料蒐集 264.2 資料探索與預處理 264.2.1 資料說明 264.2.2 資料清洗與預處理 274.2.3 資料變數轉換 314.3 敘述統計 324.3.1 目標變數分析 324.3.2 資料分布情況 334.4 新增變數組合 41第五章 實驗結結果與分析 425.1 實驗環境設定 425.2 模型驗證 425.3 實驗結果 445.3.1 台南市 445.3.2 台北市 46第六章 結論與建議 496.1 研究限制 496.2 研究結論 496.3 後續研究建議 51參考文獻 52 | zh_TW |
dc.format.extent | 2686768 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0110363057 | en_US |
dc.subject (關鍵詞) | 房價預測 | zh_TW |
dc.subject (關鍵詞) | 住宅房價影響因子 | zh_TW |
dc.subject (關鍵詞) | 類神經網路 | zh_TW |
dc.subject (關鍵詞) | 實價登錄 | zh_TW |
dc.subject (關鍵詞) | House price prediction | en_US |
dc.subject (關鍵詞) | Factors affecting house price | en_US |
dc.subject (關鍵詞) | Neural network model | en_US |
dc.subject (關鍵詞) | Actual Price Registration of Real Estate Transactions | en_US |
dc.title (題名) | 以類神經網路模型探討影響房價的關鍵外部因子-以台南市和台北市為例 | zh_TW |
dc.title (題名) | The study of external factors affecting house price–using artificial neural network models based on Tainan and Taipei City house transaction data | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | 毛麗琴(2009),「影響房價變動因素之探討-以高雄市區爲例」,商業現代化學刊,第五卷第二期,頁141-156宋豐荃(2014),「鄰近公園有助提升房價嗎?-大小公園對高低房價影響程度之研究」國立政治大學地政學系碩士論文李元拓(2009),「以時間面向探討新建交通建設對房地產價格之影響。-以國道五號及宜蘭地區為例」國立成功大學都市計畫學系碩士論文李宗霖(2016),「以類神經網路模式探討住宅房價影響因子之研究」國立交通大學工學院工程技術與管理學程碩士論文李怡婷(2005),「大眾運輸導向發展策略對捷運站區房地產價格之影響分析」國立成功大學都市計畫研究所碩士論文林忠樑、林佳慧(2014),「學校特徵與空間距離對周邊房價之影響分析-以台北市為例」,經濟論文叢刊,第四十二卷第二期,頁215-271林祖嘉、林素菁(1993),「台灣地區環境品質與公共設施對房價與房租影響之分析」,住宅學報,第一期,頁21-45林素菁(2004),「台北市國中小明星學區邊際願意支付之估計」,住宅學報,第十三卷第一期,頁15-34洪得洋、林祖嘉(1999),「臺北市捷運系統與道路寬度對房屋價格影響之研究」,住宅學報,第八期,頁47-67紀侑廷(2014),「科技園區周邊住宅房價影響因素之研究-以新竹科學園區為例」國立中興大學應用經濟學系碩士論文梁志彬(2015),「基於政府開放資料的房價預測系統」國立交通大學網路工程研究所碩士論文許智淵(2012),「類神經網路技術與特徵價格法於台北市房價預測結果之比較研究」國立臺北大學企業管理學系碩士論文許琬真(2003),「預售屋市場商譽之分析」逢甲大學經濟系碩士論文陳冠穎(2016),「大眾運輸系統對周邊不動產價格之影響-以高雄輕軌為例」國立成功大學都市計劃研究所碩士論文黃子彤(2019),「便利商店數量與服務品質對住宅價格的影響」國立政治大學私立中國地政研究所碩士論文黃允亭(2022),「應用實價登錄建立以聚類方法之推疊泛化房價預測模型-以桃園市分區建物房價資料為例」國立政治大學經濟學系碩士論文黃智穎(2021),「台南市成大城房價之預測」國立成功大學土木工程學系碩士論文黃聖恩(2021),「生活便利性對房價的影響-以高雄市為例」國立臺北大學統計學系碩士論文劉廷揚、王蓉莉、蘇政宏(2000),「高雄市消費者購屋決策行為之研究」,中華民國住宅學會第九屆會論文集,頁123-136劉俊明(2011),「重劃區專家、自住客與投資客購屋決策研究分析 : 以新竹市關埔重劃區為例」交通大學高階主管管理碩士學程碩士論文蔡瑞煌、高明志、張金鶚(1999),「類神經網路應用於房地產估價之研究」,住宅學報,第八卷,頁1-20蔡曜如(2003),「我國房地產市場之發展、影響暨政府因應對策」,中央銀行季刊,第二十五卷第四期,頁32-35謝子宸(2018),「考慮住宅周邊環境之房價預測分析模型及服務系統-以台北市與新北市為例」國立交通大學網路工程研究所碩士論文謝宜靜(2020),「應用模式樹分析實價登錄資料以過濾影響不動產漲跌的重要因子」國立成功大學工業與資訊管理學系碩士在職專班論文蘇昭安(2003),「應用倒傳遞類神經網路在颱風波浪預報之研究」國立臺灣大學工程科學與海洋工程學系碩士論文蘇國榮(2003),「建設公司商譽對住宅價格影響之研究」政治大學地政系碩士論文Ahmed Khalafallah(2008). Neural Network-Based Model for Predicting Housing. Tsinghua Science and Technology, Vol.13, No.1, pp. 325–328.Aurelia Bengochea Morancho(2003). A hedonic valuation of urban green areas. Landscape Urban Plan, Vol.66, No.1, pp.35-41.Ayush Varma, Abhijit Sarma, Sagar Doshi, & Rohini Nair(2018). House Price Prediction Using Machine Learning and Neural Networks. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, April 20-21.Connellan Owen, James Howard(1998). Estimated realisation price(ERP) by neural networks: forecasting commercial property values. Journal of Property Valuation and Investment, Vol.16, No.1, pp.71-86.Donald Haurin,David Brasington(1996). School Quality and Real House Prices: Inter- and Intrametropolitan Effects. Journal of Housing Economics, Vol.5, No.4, pp.351-368.Elaine Worzala, Margarita Lenk, & Ana Silva(1995). An Exploration of Neural Networks and Its Application to Real Estate Valuation. The Journal of Real Estate Research, Vol.10 No. 2, pp.185-201.Sherwin Rosen(1974). Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. Journal of Political Economy, Vol.82, No.1, pp.34-55.Visit Limsombunchai, Christopher Gan, & Minsoo Lee(2004). House Price Prediction: Hedonic Price Model vs. Artificial Neural Network. American Journal of Applied Sciences, Vol.1 No.3, pp.193-201.Wan Teng Lim, Lipo Wang, Yaoli Wang, & Qing Chang(2016). Housing price prediction using neural networks. 12th International Conference on Natural Computation and 13th Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, August 13-15.Ying-Hui Chiang, Yuan Ku, Feng Liu, Chin-Oh Chang(2019). House Price Dispersion in Taipei Residential Communities. International Real Estate Review, Vol.22, No.1, pp.109-129. | zh_TW |
dc.identifier.doi (DOI) | 10.6814/NCCU202200647 | en_US |