學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 基於時序與風格的語音節目推薦系統研究
An investigation of spoken program recommendation systems based on time and style
作者 蘇品維
Su, Pin-Wei
貢獻者 杜雨儒
Tu,Yu-Ju
蘇品維
Su,Pin-Wei
關鍵詞 推薦系統
冷啟動問題
Podcast
機器學習
時間
敘事風格
: Recommendation systems
Cold-start problem
Podcast
Machine Learning
Listening Time
Speaking Style
日期 2022
上傳時間 1-八月-2022 17:22:56 (UTC+8)
摘要 因為網際網路以及串流技術的蓬勃發展,在相關的市場上開始衍伸出許多新媒體服務,例如:影音串流(YouTube) 語音節目(Podcast)。其中又因為語音節目的一些自身的特性,以及在台灣市場當中發生了在短時間內湧入大量新用戶以及新產品的問題,使得在語音節目平台中建置推薦系統顯得相當困難,特別是在推薦新產品或是推薦產品給新用戶的議題上。換句話說,要如何推薦適合的語音節目給新的使用者 或是如何推薦新的語音節目給使用者等議題顯得十分重要且具有挑戰性。這些議題在過去的研究中這些問題也被稱作「冷啟動問題」。
而過去對於語音節目推薦上的相關研究十分稀少。而本研究基於在過去少量的語音節目推薦文獻上所使用之文字描述和類別的特性,結合兩個特有的特性—「時序」與語音節目的「敘事風格」,並搭配混合推薦的方法,去解決在語音節目上所發生的冷啟動問題。本研究也透過網路爬蟲的方式蒐集 APPLE Podcast 的評分資料作為推薦系統的訓練資料。除了線下測試外,也實作出推薦系統介面實際讓使用者進行使用者測試。根據我們的線下測試以及使用者測試之結果可以得知在時序與風格屬性的幫助下,在整體以及新使用者的推薦效果都有顯著的提升。
With the rapid development of the Internet and streaming technology, many new media services have begun to spread to related markets, such as video streaming (YouTube) and spoken program services (podcasts). Due to the characteristics of spoken programs and the influx of new users and products in the Taiwan market in a short time, it is challenging to build a recommendation system in the spoken program platform, especially on the issues of recommending new items or recommending items to new users. In other words, the challenges of recommending suitable spoken programs to new users or recommending new spoken programs to users remain open research questions. These issues are called “cold-start problems” in past studies. Related research on spoken program recommendations was scarce in the past. The present study, based on the characteristics of text descriptions and categories used in a few recommended literatures of spoken programs in the past, combined two unique characteristics—listening time and speaking styles of spoken programs—in a hybrid recommendation method to solve the cold-start problems in spoken programs. The study also collected the rating data of Apple Podcasts through the web crawler, and podcast ratings were used as training data for the recommendation system. In addition to offline testing, we implemented a recommended system interface for users to conduct user testing. According to the results of our offline and user tests, with the addition of time and speaking styles, the performance of the recommendation in overall and new users was significantly improved.
參考文獻 1. An, H. S. 2017. "Breaking the Pop Music Market in the Us: Effects of Online PrePurchase Influences and Acculturation of Asian Consumers on Their Responses
to Asian Artists’ Contemporary Pop Music," Proceedings of the Northeast
Business & Economics Association).
2. Arif, I., Aslam, W., and Siddiqui, H. 2020. "Influence of Brand Related UserGenerated Content through Facebook on Consumer Behaviour: A StimulusOrganism-Response Framework," International Journal of Electronic Business
(15:2), pp. 109-132.
3. Ayata, D., Yaslan, Y., and Kamasak, M. E. 2018. "Emotion Based Music
Recommendation System Using Wearable Physiological Sensors," IEEE
transactions on consumer electronics (64:2), pp. 196-203.
4. Bai, T., Wen, J.-R., Zhang, J., and Zhao, W. X. 2017. "A Neural Collaborative
Filtering Model with Interaction-Based Neighborhood," Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, pp. 1979-1982.
5. Balabanović, M., and Shoham, Y. 1997. "Fab: Content-Based, Collaborative
Recommendation," Commun. ACM (40:3), pp. 66–72.
6. Beel, J., Langer, S., Genzmehr, M., and Nürnberger, A. 2013. "Introducing
Docear`s Research Paper Recommender System," Proceedings of the 13th
ACM/IEEE-CS joint conference on Digital libraries, pp. 459-460.
7. Belk, R. W. 1974. "An Exploratory Assessment of Situational Effects in Buyer
Behavior," Journal of marketing research (11:2), pp. 156-163.
8. Benton, G., Fazelnia, G., Wang, A., and Carterette, B. 2020. "Trajectory Based
Podcast Recommendation," arXiv preprint arXiv:2009.03859).
9. Bobadilla, J., Ortega, F., Hernando, A., and Bernal, J. 2012. "A Collaborative
Filtering Approach to Mitigate the New User Cold Start Problem," Knowledgebased systems (26), pp. 225-238.
10. Burke, R. 2002. "Hybrid Recommender Systems: Survey and Experiments," User
modeling and user-adapted interaction (12:4), pp. 331-370.
11. Cai, J.-J., Tang, J., Chen, Q.-G., Hu, Y., Wang, X., and Huang, S.-J. 2019. "MultiView Active Learning for Video Recommendation," IJCAI, pp. 2053-2059.
12. Chen, C.-M., and Sun, Y.-C. 2012. "Assessing the Effects of Different Multimedia
Materials on Emotions and Learning Performance for Visual and Verbal Style
Learners," Computers & Education (59:4), pp. 1273-1285.
13. Chen, H.-H., Chung, C.-A., Huang, H.-C., and Tsui, W. 2017. "Common Pitfalls
in Training and Evaluating Recommender Systems," ACM SIGKDD Explorations
Newsletter (19:1), pp. 37-45.
14. Choi, S.-M., Jang, K., Lee, T.-D., Khreishah, A., and Noh, W. 2020. "Alleviating
Item-Side Cold-Start Problems in Recommender Systems Using Weak
Supervision," IEEE Access (8), pp. 167747-167756.
15. Collins, A., Tkaczyk, D., Aizawa, A., and Beel, J. 2018. "Position Bias in
Recommender Systems for Digital Libraries," International Conference on
Information: Springer, pp. 335-344.
16. Common-Wealth-Magazine ,2021. Complete investigation report of "2021 Listening to
Economic Survey" https://www.cw.com.tw/article/5115003?template=transformers (Last
access date 2022/07)
77
17. Darshna, P. 2018. "Music Recommendation Based on Content and Collaborative
Approach & Reducing Cold Start Problem," 2018 2nd International Conference
on Inventive Systems and Control (ICISC): IEEE, pp. 1033-1037.
18. Das, D., Sahoo, L., and Datta, S. 2017. "A Survey on Recommendation System,"
International Journal of Computer Applications (160:7).
19. Deng, S., Wang, D., Li, X., and Xu, G. 2015. "Exploring User Emotion in
Microblogs for Music Recommendation," Expert Systems with Applications
(42:23), pp. 9284-9293.
20. Díaz-Morales, J. F., Escribano, C., and Jankowski, K. S. 2015. "Chronotype and
Time-of-Day Effects on Mood During School Day," Chronobiology international
(32:1), pp. 37-42.
21. Felício, C. Z., Paixão, K. V., Barcelos, C. A., and Preux, P. 2017. "A Multi-Armed
Bandit Model Selection for Cold-Start User Recommendation," Proceedings of
the 25th Conference on User Modeling, Adaptation and Personalization, pp. 32-
40.
22. Gunawan, A. A., and Suhartono, D. 2019. "Music Recommender System Based
on Genre Using Convolutional Recurrent Neural Networks," Procedia Computer
Science (157), pp. 99-109.
23. Guo, G., Zhang, J., and Yorke-Smith, N. 2015. "Trustsvd: Collaborative Filtering
with Both the Explicit and Implicit Influence of User Trust and of Item Ratings,"
Proceedings of the AAAI Conference on Artificial Intelligence.
24. He, X., Du, X., Wang, X., Tian, F., Tang, J., and Chua, T.-S. 2018. "Outer ProductBased Neural Collaborative Filtering," arXiv preprint arXiv:1808.03912).
25. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. 2017. "Neural
Collaborative Filtering," Proceedings of the 26th international conference on
world wide web, pp. 173-182.
26. Herce-Zelaya, J., Porcel, C., Bernabé-Moreno, J., Tejeda-Lorente, A., and
Herrera-Viedma, E. 2020. "New Technique to Alleviate the Cold Start Problem in
Recommender Systems Using Information from Social Media and Random
Decision Forests," Information Sciences (536), pp. 156-170.
27. Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. 1999. "An Algorithmic
Framework for Performing Collaborative Filtering," Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 230-237.
28. Hidalgo, M. P., Caumo, W., Posser, M., Coccaro, S. B., Camozzato, A. L., and
Chaves, M. L. F. 2009. "Relationship between Depressive Mood and Chronotype
in Healthy Subjects," Psychiatry and clinical neurosciences (63:3), pp. 283-290.
29. Hu, Y., and Ogihara, M. 2011. "Nextone Player: A Music Recommendation
System Based on User Behavior," ISMIR, pp. 103-108.
30. Hyung, Z., Lee, K., and Lee, K. 2014. "Music Recommendation Using Text
Analysis on Song Requests to Radio Stations," Expert Systems with Applications
(41:5), pp. 2608-2618.
31. Inside ,2020. Show you Podcast- 2020 Taiwan Podcast Industry Report for the
First Half of the Year https://www.inside.com.tw/article/20391-2020-podcastreport (Last access date 2022/07)
32. Ismailoglu, F. 2021. "Aggregating User Preferences in Group Recommender
Systems: A Crowdsourcing Approach," Decision Support Systems), p. 113663.
33. Jelodar, H., Wang, Y., Rabbani, M., Ahmadi, S. B. B., Boukela, L., Zhao, R., and
Larik, R. S. A. 2021. "A Nlp Framework Based on Meaningful Latent-Topic
78
Detection and Sentiment Analysis Via Fuzzy Lattice Reasoning on Youtube
Comments," Multimedia Tools and Applications (80:3), pp. 4155-4181.
34. Joo, Y. S., and Kim, S.-K. 2020. "Scent Emotion Evaluation Experiment for
Multimedia Application," 2020 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia): IEEE, pp. 1-4.
35. Kaji, N., and Kobayashi, H. 2017. "Incremental Skip-Gram Model with Negative
Sampling," arXiv preprint arXiv:1704.03956).
36. Kim, H.-N., Ha, I., Lee, K.-S., Jo, G.-S., and El-Saddik, A. 2011. "Collaborative
User Modeling for Enhanced Content Filtering in Recommender Systems,"
Decision Support Systems (51:4), pp. 772-781.
37. Kudielka, B. M., Schommer, N. C., Hellhammer, D. H., and Kirschbaum, C. 2004.
"Acute Hpa Axis Responses, Heart Rate, and Mood Changes to Psychosocial
Stress (Tsst) in Humans at Different Times of Day," Psychoneuroendocrinology
(29:8), pp. 983-992.
38. Kumar, P., and Thakur, R. S. 2018. "Recommendation System Techniques and
Related Issues: A Survey," International Journal of Information Technology
(10:4), pp. 495-501.
39. Lang, A., and Chrzan, J. 2015. "Media Multitasking: Good, Bad, or Ugly?,"
Annals of the International Communication Association (39:1), pp. 99-128.
40. Lee, J.-S., and Shin, D.-H. 2015. "A Study on the Preference between Emotion of
Human and Media Genre in Smart Device," Science of Emotion and Sensibility
(18:1), pp. 59-66.
41. Li, G., and Zhang, J. 2018. "Music Personalized Recommendation System Based
on Improved Knn Algorithm," 2018 IEEE 3rd Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC): IEEE, pp. 777-781.
42. Li, Y.-M., Liou, J.-H., and Li, Y.-W. 2020. "A Social Recommendation Approach
for Reward-Based Crowdfunding Campaigns," Information & Management (57:7),
p. 103246.
43. Liang, T.-P., Lai, H.-J., and Ku, Y.-C. 2006. "Personalized Content
Recommendation and User Satisfaction: Theoretical Synthesis and Empirical
Findings," Journal of Management Information Systems (23:3), pp. 45-70.
44. Llisterri, J. 1992. "Speaking Styles in Speech Research," Workshop on Integrating
Speech and Natural Language: Citeseer.
45. Marshall, D., and Sidorov, K. 2001. "Introduction to Multimedia," UK: School of
Computer Science & Informatics Cardiff University).
46. Martikainen, K. 2020. "Audio-Based Stylistic Characteristics of Podcasts for
Search and Recommendation: A User and Computational Analysis." University of
Twente.
47. Massquantity, 2021. LibRecommender [Source code].
https://github.com/massquantity/LibRecommender. (Last access date 2022/07)
48. Mehrabian, A., and Russell, J. A. 1974. An Approach to Environmental
Psychology. the MIT Press.
49. Moscato, V., Picariello, A., and Sperli, G. 2020. "An Emotional Recommender
System for Music," IEEE Intelligent Systems).
50. Murray, G., Nicholas, C. L., Kleiman, J., Dwyer, R., Carrington, M. J., Allen, N.
B., and Trinder, J. 2009. "Nature’s Clocks and Human Mood: The Circadian
System Modulates Reward Motivation," Emotion (9:5), p. 705.
79
51. National Audiovisual Institute, 2022.[Source code]
https://github.com/ina-foss/inaSpeechSegmenter (Last access date 2022/07)
52. Nazari, Z., Charbuillet, C., Pages, J., Laurent, M., Charrier, D., Vecchione, B., and
Carterette, B. 2020. "Recommending Podcasts for Cold-Start Users Based on
Music Listening and Taste," in: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. Virtual Event,
China: Association for Computing Machinery, pp. 1041–1050.
53. Panagiotakis, C., Papadakis, H., and Fragopoulou, P. 2021. "A Dual Hybrid
Recommender System Based on Scor and the Random Forest," Computer Science
and Information Systems (18:1), pp. 115-128.
54. Raheem, K. R., and Ali, I. H. 2020. "Multimodal Content-Based Recommender
System Using Three-Dimension Convolution Neural Network," COMPUSOFT:
An International Journal of Advanced Computer Technology (9:5).
55. Rana, M. K. C. 2012. "Survey Paper on Recommendation System,").
56. Rendle, S. 2010. "Factorization Machines," 2010 IEEE International conference
on data mining: IEEE, pp. 995-1000.
57. Roenneberg, T. 2012. "What Is Chronotype?," Sleep and biological rhythms (10:2),
pp. 75-76.
58. Ruff, J. 2002. "Information Overload: Causes, Symptoms and Solutions," Harvard
Graduate School of Education), pp. 1-13.
59. Ryu, J., Capistrano, E. P., and Lin, H.-C. 2020. "Non-Korean Consumers’
Preferences on Korean Popular Music: A Two-Country Study," International
Journal of Market Research (62:2), pp. 234-252.
60. Sanz-Cruzado, J., Castells, P., and López, E. 2019. "A Simple Multi-Armed
Nearest-Neighbor Bandit for Interactive Recommendation," Proceedings of the
13th ACM Conference on Recommender Systems, pp. 358-362.
61. Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. 2000. "Application of
Dimensionality Reduction in Recommender System-a Case Study," Minnesota
Univ Minneapolis Dept of Computer Science.
62. Selvi, C., and Sivasankar, E. 2019. "An Efficient Context-Aware Music
Recommendation Based on Emotion and Time Context," in Data Science and Big
Data Analytics. Springer, pp. 215-228.
63. Shani, G., and Gunawardana, A. 2011. "Evaluating Recommendation Systems,"
in Recommender Systems Handbook. Springer, pp. 257-297.
64. Son, J., and Kim, S. B. 2018. "Academic Paper Recommender System Using
Multilevel Simultaneous Citation Networks," Decision Support Systems (105), pp.
24-33.
65. Subramaniyaswamy, V., and Logesh, R. 2017. "Adaptive Knn Based
Recommender System through Mining of User Preferences," Wireless Personal
Communications (97:2), pp. 2229-2247.
66. Sulaiman, N., Muhammad, A. M., Ganapathy, N. N. D. F., Khairuddin, Z., and
Othman, S. 2017. "A Comparison of Students` Performances Using Audio Only
and Video Media Methods," English language teaching (10:7), pp. 210-215.
67. Taylor, B. J., and Hasler, B. P. 2018. "Chronotype and Mental Health: Recent
Advances," Current psychiatry reports (20:8), pp. 1-10.
68. Thales,2021. PySpeech [Source code]
https://github.com/thalesaguiar21/PySpeech (Last access date 2022/07)
69. Thorat, P. B., Goudar, R., and Barve, S. 2015. "Survey on Collaborative Filtering,
Content-Based Filtering and Hybrid Recommendation System," International
Journal of Computer Applications (110:4), pp. 31-36.
80
70. Tsagkias, M., Larson, M., and De Rijke, M. 2010. "Predicting Podcast Preference:
An Analysis Framework and Its Application," Journal of the American Society for
information Science and Technology (61:2), pp. 374-391.
71. Volkovs, M., Yu, G. W., and Poutanen, T. 2017. "Content-Based Neighbor
Models for Cold Start in Recommender Systems," in Proceedings of the
Recommender Systems Challenge 2017. pp. 1-6.
72. Volokhin, S., and Agichtein, E. 2018. "Understanding Music Listening Intents
During Daily Activities with Implications for Contextual Music
Recommendation," Proceedings of the 2018 Conference on Human Information
Interaction & Retrieval, pp. 313-316.
73. Wang, D., Zhang, X., Yu, D., Xu, G., and Deng, S. 2020a. "Came: Content-and
Context-Aware Music Embedding for Recommendation," IEEE transactions on
neural networks and learning systems (32:3), pp. 1375-1388.
74. Wang, R., Ma, X., Jiang, C., Ye, Y., and Zhang, Y. 2020b. "Heterogeneous
Information Network-Based Music Recommendation System in Mobile
Networks," Computer Communications (150), pp. 429-437.
75. Wang, X., Rosenblum, D., and Wang, Y. 2012. "Context-Aware Mobile Music
Recommendation for Daily Activities," Proceedings of the 20th ACM
international conference on Multimedia, pp. 99-108.
76. Xing, Z., Parandehgheibi, M., Xiao, F., Kulkarni, N., and Pouliot, C. 2016.
"Content-Based Recommendation for Podcast Audio-Items Using Natural
Language Processing Techniques," 2016 IEEE International Conference on Big
Data (Big Data): IEEE, pp. 2378-2383.
77. Xu, L., Wen, X., Shi, J., Li, S., Xiao, Y., Wan, Q., and Qian, X. 2021. "Effects of
Individual Factors on Perceived Emotion and Felt Emotion of Music: Based on
Machine Learning Methods," Psychology of Music (49:5), pp. 1069-1087.
78. Xu, X., Dutta, K., and Ge, C. 2018. "Do Adjective Features from User Reviews
Address Sparsity and Transparency in Recommender Systems?," Electronic
Commerce Research and Applications (29), pp. 113-123.
79. Yang, L., Sobolev, M., Wang, Y., Chen, J., Dunne, D., Tsangouri, C., Dell, N.,
Naaman, M., and Estrin, D. 2019. "How Intention Informed Recommendations
Modulate Choices: A Field Study of Spoken Word Content," The World Wide Web
Conference, pp. 2169-2180.
80. Ye, B. K., Tu, Y. J. T., and Liang, T. P. 2019. "A Hybrid System for Personalized
Content Recommendation," Journal of Electronic Commerce Research (20:2), pp.
91-104.
81. Yin, H., Cui, B., Li, J., Yao, J., and Chen, C. 2012. "Challenging the Long Tail
Recommendation," arXiv preprint arXiv:1205.6700).
82. Yu, T., Guo, J., Li, W., and Lu, M. 2021. "A Mixed Heterogeneous Factorization
Model for Non-Overlapping Cross-Domain Recommendation," Decision Support
Systems), p. 113625.
83. Zhang, H., Lu, Y., Gupta, S., and Zhao, L. 2014. "What Motivates Customers to
Participate in Social Commerce? The Impact of Technological Environments and
Virtual Customer Experiences," Information & Management (51:8), pp. 1017-
1030.
84. Zhu, Y., Lin, J., He, S., Wang, B., Guan, Z., Liu, H., and Cai, D. 2019. "Addressing
the Item Cold-Start Problem by Attribute-Driven Active Learning," IEEE
Transactions on Knowledge and Data Engineering (32:4), pp. 631-644
描述 碩士
國立政治大學
資訊管理學系
109356024
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109356024
資料類型 thesis
dc.contributor.advisor 杜雨儒zh_TW
dc.contributor.advisor Tu,Yu-Juen_US
dc.contributor.author (作者) 蘇品維zh_TW
dc.contributor.author (作者) Su,Pin-Weien_US
dc.creator (作者) 蘇品維zh_TW
dc.creator (作者) Su, Pin-Weien_US
dc.date (日期) 2022en_US
dc.date.accessioned 1-八月-2022 17:22:56 (UTC+8)-
dc.date.available 1-八月-2022 17:22:56 (UTC+8)-
dc.date.issued (上傳時間) 1-八月-2022 17:22:56 (UTC+8)-
dc.identifier (其他 識別碼) G0109356024en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/141038-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理學系zh_TW
dc.description (描述) 109356024zh_TW
dc.description.abstract (摘要) 因為網際網路以及串流技術的蓬勃發展,在相關的市場上開始衍伸出許多新媒體服務,例如:影音串流(YouTube) 語音節目(Podcast)。其中又因為語音節目的一些自身的特性,以及在台灣市場當中發生了在短時間內湧入大量新用戶以及新產品的問題,使得在語音節目平台中建置推薦系統顯得相當困難,特別是在推薦新產品或是推薦產品給新用戶的議題上。換句話說,要如何推薦適合的語音節目給新的使用者 或是如何推薦新的語音節目給使用者等議題顯得十分重要且具有挑戰性。這些議題在過去的研究中這些問題也被稱作「冷啟動問題」。
而過去對於語音節目推薦上的相關研究十分稀少。而本研究基於在過去少量的語音節目推薦文獻上所使用之文字描述和類別的特性,結合兩個特有的特性—「時序」與語音節目的「敘事風格」,並搭配混合推薦的方法,去解決在語音節目上所發生的冷啟動問題。本研究也透過網路爬蟲的方式蒐集 APPLE Podcast 的評分資料作為推薦系統的訓練資料。除了線下測試外,也實作出推薦系統介面實際讓使用者進行使用者測試。根據我們的線下測試以及使用者測試之結果可以得知在時序與風格屬性的幫助下,在整體以及新使用者的推薦效果都有顯著的提升。
zh_TW
dc.description.abstract (摘要) With the rapid development of the Internet and streaming technology, many new media services have begun to spread to related markets, such as video streaming (YouTube) and spoken program services (podcasts). Due to the characteristics of spoken programs and the influx of new users and products in the Taiwan market in a short time, it is challenging to build a recommendation system in the spoken program platform, especially on the issues of recommending new items or recommending items to new users. In other words, the challenges of recommending suitable spoken programs to new users or recommending new spoken programs to users remain open research questions. These issues are called “cold-start problems” in past studies. Related research on spoken program recommendations was scarce in the past. The present study, based on the characteristics of text descriptions and categories used in a few recommended literatures of spoken programs in the past, combined two unique characteristics—listening time and speaking styles of spoken programs—in a hybrid recommendation method to solve the cold-start problems in spoken programs. The study also collected the rating data of Apple Podcasts through the web crawler, and podcast ratings were used as training data for the recommendation system. In addition to offline testing, we implemented a recommended system interface for users to conduct user testing. According to the results of our offline and user tests, with the addition of time and speaking styles, the performance of the recommendation in overall and new users was significantly improved.en_US
dc.description.tableofcontents Table of Contents
CHAPTER 1: Introduction 6
1-1 Research motivation 6
CHAPTER2: Literature Review 10
2-1 Methods in recommendation systems 10
2-2 New user and new items recommendations 13
2-3 Related works in hybrid multimedia recommendation systems 14
2-3-1 Hybrid method in multimedia recommendations 14
2-3-2 The features of user and item in multimedia recommendations 22
2-4 The features of spoken program recommendations 24
2-4-1 Text-based recommendation 24
2-4-2 Speaking style 27
2-4-3 Listening Time 28
CHAPTER3: Proposed Model 31
CHAPTER4: Empirical Experiments 39
4-1 Baselines 39
4-2 Experimental design 39
4-2-1 The offline test approach 40
4-2-2 The user test approach 47
CHAPTER 5: Summary of Findings and Discussion 55
5-1 The findings in offline test 55
5-2 The findings in user test 61
5-2-1 Data description of the user test samples 61
5-2-2 The findings in user test 63
5-3 Discussion 70
CHAPTER6: Conclusion 74
References 76
Appendix 81
zh_TW
dc.format.extent 3087016 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109356024en_US
dc.subject (關鍵詞) 推薦系統zh_TW
dc.subject (關鍵詞) 冷啟動問題zh_TW
dc.subject (關鍵詞) Podcastzh_TW
dc.subject (關鍵詞) 機器學習zh_TW
dc.subject (關鍵詞) 時間zh_TW
dc.subject (關鍵詞) 敘事風格zh_TW
dc.subject (關鍵詞) : Recommendation systemsen_US
dc.subject (關鍵詞) Cold-start problemen_US
dc.subject (關鍵詞) Podcasten_US
dc.subject (關鍵詞) Machine Learningen_US
dc.subject (關鍵詞) Listening Timeen_US
dc.subject (關鍵詞) Speaking Styleen_US
dc.title (題名) 基於時序與風格的語音節目推薦系統研究zh_TW
dc.title (題名) An investigation of spoken program recommendation systems based on time and styleen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1. An, H. S. 2017. "Breaking the Pop Music Market in the Us: Effects of Online PrePurchase Influences and Acculturation of Asian Consumers on Their Responses
to Asian Artists’ Contemporary Pop Music," Proceedings of the Northeast
Business & Economics Association).
2. Arif, I., Aslam, W., and Siddiqui, H. 2020. "Influence of Brand Related UserGenerated Content through Facebook on Consumer Behaviour: A StimulusOrganism-Response Framework," International Journal of Electronic Business
(15:2), pp. 109-132.
3. Ayata, D., Yaslan, Y., and Kamasak, M. E. 2018. "Emotion Based Music
Recommendation System Using Wearable Physiological Sensors," IEEE
transactions on consumer electronics (64:2), pp. 196-203.
4. Bai, T., Wen, J.-R., Zhang, J., and Zhao, W. X. 2017. "A Neural Collaborative
Filtering Model with Interaction-Based Neighborhood," Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, pp. 1979-1982.
5. Balabanović, M., and Shoham, Y. 1997. "Fab: Content-Based, Collaborative
Recommendation," Commun. ACM (40:3), pp. 66–72.
6. Beel, J., Langer, S., Genzmehr, M., and Nürnberger, A. 2013. "Introducing
Docear`s Research Paper Recommender System," Proceedings of the 13th
ACM/IEEE-CS joint conference on Digital libraries, pp. 459-460.
7. Belk, R. W. 1974. "An Exploratory Assessment of Situational Effects in Buyer
Behavior," Journal of marketing research (11:2), pp. 156-163.
8. Benton, G., Fazelnia, G., Wang, A., and Carterette, B. 2020. "Trajectory Based
Podcast Recommendation," arXiv preprint arXiv:2009.03859).
9. Bobadilla, J., Ortega, F., Hernando, A., and Bernal, J. 2012. "A Collaborative
Filtering Approach to Mitigate the New User Cold Start Problem," Knowledgebased systems (26), pp. 225-238.
10. Burke, R. 2002. "Hybrid Recommender Systems: Survey and Experiments," User
modeling and user-adapted interaction (12:4), pp. 331-370.
11. Cai, J.-J., Tang, J., Chen, Q.-G., Hu, Y., Wang, X., and Huang, S.-J. 2019. "MultiView Active Learning for Video Recommendation," IJCAI, pp. 2053-2059.
12. Chen, C.-M., and Sun, Y.-C. 2012. "Assessing the Effects of Different Multimedia
Materials on Emotions and Learning Performance for Visual and Verbal Style
Learners," Computers & Education (59:4), pp. 1273-1285.
13. Chen, H.-H., Chung, C.-A., Huang, H.-C., and Tsui, W. 2017. "Common Pitfalls
in Training and Evaluating Recommender Systems," ACM SIGKDD Explorations
Newsletter (19:1), pp. 37-45.
14. Choi, S.-M., Jang, K., Lee, T.-D., Khreishah, A., and Noh, W. 2020. "Alleviating
Item-Side Cold-Start Problems in Recommender Systems Using Weak
Supervision," IEEE Access (8), pp. 167747-167756.
15. Collins, A., Tkaczyk, D., Aizawa, A., and Beel, J. 2018. "Position Bias in
Recommender Systems for Digital Libraries," International Conference on
Information: Springer, pp. 335-344.
16. Common-Wealth-Magazine ,2021. Complete investigation report of "2021 Listening to
Economic Survey" https://www.cw.com.tw/article/5115003?template=transformers (Last
access date 2022/07)
77
17. Darshna, P. 2018. "Music Recommendation Based on Content and Collaborative
Approach & Reducing Cold Start Problem," 2018 2nd International Conference
on Inventive Systems and Control (ICISC): IEEE, pp. 1033-1037.
18. Das, D., Sahoo, L., and Datta, S. 2017. "A Survey on Recommendation System,"
International Journal of Computer Applications (160:7).
19. Deng, S., Wang, D., Li, X., and Xu, G. 2015. "Exploring User Emotion in
Microblogs for Music Recommendation," Expert Systems with Applications
(42:23), pp. 9284-9293.
20. Díaz-Morales, J. F., Escribano, C., and Jankowski, K. S. 2015. "Chronotype and
Time-of-Day Effects on Mood During School Day," Chronobiology international
(32:1), pp. 37-42.
21. Felício, C. Z., Paixão, K. V., Barcelos, C. A., and Preux, P. 2017. "A Multi-Armed
Bandit Model Selection for Cold-Start User Recommendation," Proceedings of
the 25th Conference on User Modeling, Adaptation and Personalization, pp. 32-
40.
22. Gunawan, A. A., and Suhartono, D. 2019. "Music Recommender System Based
on Genre Using Convolutional Recurrent Neural Networks," Procedia Computer
Science (157), pp. 99-109.
23. Guo, G., Zhang, J., and Yorke-Smith, N. 2015. "Trustsvd: Collaborative Filtering
with Both the Explicit and Implicit Influence of User Trust and of Item Ratings,"
Proceedings of the AAAI Conference on Artificial Intelligence.
24. He, X., Du, X., Wang, X., Tian, F., Tang, J., and Chua, T.-S. 2018. "Outer ProductBased Neural Collaborative Filtering," arXiv preprint arXiv:1808.03912).
25. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. 2017. "Neural
Collaborative Filtering," Proceedings of the 26th international conference on
world wide web, pp. 173-182.
26. Herce-Zelaya, J., Porcel, C., Bernabé-Moreno, J., Tejeda-Lorente, A., and
Herrera-Viedma, E. 2020. "New Technique to Alleviate the Cold Start Problem in
Recommender Systems Using Information from Social Media and Random
Decision Forests," Information Sciences (536), pp. 156-170.
27. Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. 1999. "An Algorithmic
Framework for Performing Collaborative Filtering," Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 230-237.
28. Hidalgo, M. P., Caumo, W., Posser, M., Coccaro, S. B., Camozzato, A. L., and
Chaves, M. L. F. 2009. "Relationship between Depressive Mood and Chronotype
in Healthy Subjects," Psychiatry and clinical neurosciences (63:3), pp. 283-290.
29. Hu, Y., and Ogihara, M. 2011. "Nextone Player: A Music Recommendation
System Based on User Behavior," ISMIR, pp. 103-108.
30. Hyung, Z., Lee, K., and Lee, K. 2014. "Music Recommendation Using Text
Analysis on Song Requests to Radio Stations," Expert Systems with Applications
(41:5), pp. 2608-2618.
31. Inside ,2020. Show you Podcast- 2020 Taiwan Podcast Industry Report for the
First Half of the Year https://www.inside.com.tw/article/20391-2020-podcastreport (Last access date 2022/07)
32. Ismailoglu, F. 2021. "Aggregating User Preferences in Group Recommender
Systems: A Crowdsourcing Approach," Decision Support Systems), p. 113663.
33. Jelodar, H., Wang, Y., Rabbani, M., Ahmadi, S. B. B., Boukela, L., Zhao, R., and
Larik, R. S. A. 2021. "A Nlp Framework Based on Meaningful Latent-Topic
78
Detection and Sentiment Analysis Via Fuzzy Lattice Reasoning on Youtube
Comments," Multimedia Tools and Applications (80:3), pp. 4155-4181.
34. Joo, Y. S., and Kim, S.-K. 2020. "Scent Emotion Evaluation Experiment for
Multimedia Application," 2020 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia): IEEE, pp. 1-4.
35. Kaji, N., and Kobayashi, H. 2017. "Incremental Skip-Gram Model with Negative
Sampling," arXiv preprint arXiv:1704.03956).
36. Kim, H.-N., Ha, I., Lee, K.-S., Jo, G.-S., and El-Saddik, A. 2011. "Collaborative
User Modeling for Enhanced Content Filtering in Recommender Systems,"
Decision Support Systems (51:4), pp. 772-781.
37. Kudielka, B. M., Schommer, N. C., Hellhammer, D. H., and Kirschbaum, C. 2004.
"Acute Hpa Axis Responses, Heart Rate, and Mood Changes to Psychosocial
Stress (Tsst) in Humans at Different Times of Day," Psychoneuroendocrinology
(29:8), pp. 983-992.
38. Kumar, P., and Thakur, R. S. 2018. "Recommendation System Techniques and
Related Issues: A Survey," International Journal of Information Technology
(10:4), pp. 495-501.
39. Lang, A., and Chrzan, J. 2015. "Media Multitasking: Good, Bad, or Ugly?,"
Annals of the International Communication Association (39:1), pp. 99-128.
40. Lee, J.-S., and Shin, D.-H. 2015. "A Study on the Preference between Emotion of
Human and Media Genre in Smart Device," Science of Emotion and Sensibility
(18:1), pp. 59-66.
41. Li, G., and Zhang, J. 2018. "Music Personalized Recommendation System Based
on Improved Knn Algorithm," 2018 IEEE 3rd Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC): IEEE, pp. 777-781.
42. Li, Y.-M., Liou, J.-H., and Li, Y.-W. 2020. "A Social Recommendation Approach
for Reward-Based Crowdfunding Campaigns," Information & Management (57:7),
p. 103246.
43. Liang, T.-P., Lai, H.-J., and Ku, Y.-C. 2006. "Personalized Content
Recommendation and User Satisfaction: Theoretical Synthesis and Empirical
Findings," Journal of Management Information Systems (23:3), pp. 45-70.
44. Llisterri, J. 1992. "Speaking Styles in Speech Research," Workshop on Integrating
Speech and Natural Language: Citeseer.
45. Marshall, D., and Sidorov, K. 2001. "Introduction to Multimedia," UK: School of
Computer Science & Informatics Cardiff University).
46. Martikainen, K. 2020. "Audio-Based Stylistic Characteristics of Podcasts for
Search and Recommendation: A User and Computational Analysis." University of
Twente.
47. Massquantity, 2021. LibRecommender [Source code].
https://github.com/massquantity/LibRecommender. (Last access date 2022/07)
48. Mehrabian, A., and Russell, J. A. 1974. An Approach to Environmental
Psychology. the MIT Press.
49. Moscato, V., Picariello, A., and Sperli, G. 2020. "An Emotional Recommender
System for Music," IEEE Intelligent Systems).
50. Murray, G., Nicholas, C. L., Kleiman, J., Dwyer, R., Carrington, M. J., Allen, N.
B., and Trinder, J. 2009. "Nature’s Clocks and Human Mood: The Circadian
System Modulates Reward Motivation," Emotion (9:5), p. 705.
79
51. National Audiovisual Institute, 2022.[Source code]
https://github.com/ina-foss/inaSpeechSegmenter (Last access date 2022/07)
52. Nazari, Z., Charbuillet, C., Pages, J., Laurent, M., Charrier, D., Vecchione, B., and
Carterette, B. 2020. "Recommending Podcasts for Cold-Start Users Based on
Music Listening and Taste," in: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. Virtual Event,
China: Association for Computing Machinery, pp. 1041–1050.
53. Panagiotakis, C., Papadakis, H., and Fragopoulou, P. 2021. "A Dual Hybrid
Recommender System Based on Scor and the Random Forest," Computer Science
and Information Systems (18:1), pp. 115-128.
54. Raheem, K. R., and Ali, I. H. 2020. "Multimodal Content-Based Recommender
System Using Three-Dimension Convolution Neural Network," COMPUSOFT:
An International Journal of Advanced Computer Technology (9:5).
55. Rana, M. K. C. 2012. "Survey Paper on Recommendation System,").
56. Rendle, S. 2010. "Factorization Machines," 2010 IEEE International conference
on data mining: IEEE, pp. 995-1000.
57. Roenneberg, T. 2012. "What Is Chronotype?," Sleep and biological rhythms (10:2),
pp. 75-76.
58. Ruff, J. 2002. "Information Overload: Causes, Symptoms and Solutions," Harvard
Graduate School of Education), pp. 1-13.
59. Ryu, J., Capistrano, E. P., and Lin, H.-C. 2020. "Non-Korean Consumers’
Preferences on Korean Popular Music: A Two-Country Study," International
Journal of Market Research (62:2), pp. 234-252.
60. Sanz-Cruzado, J., Castells, P., and López, E. 2019. "A Simple Multi-Armed
Nearest-Neighbor Bandit for Interactive Recommendation," Proceedings of the
13th ACM Conference on Recommender Systems, pp. 358-362.
61. Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. 2000. "Application of
Dimensionality Reduction in Recommender System-a Case Study," Minnesota
Univ Minneapolis Dept of Computer Science.
62. Selvi, C., and Sivasankar, E. 2019. "An Efficient Context-Aware Music
Recommendation Based on Emotion and Time Context," in Data Science and Big
Data Analytics. Springer, pp. 215-228.
63. Shani, G., and Gunawardana, A. 2011. "Evaluating Recommendation Systems,"
in Recommender Systems Handbook. Springer, pp. 257-297.
64. Son, J., and Kim, S. B. 2018. "Academic Paper Recommender System Using
Multilevel Simultaneous Citation Networks," Decision Support Systems (105), pp.
24-33.
65. Subramaniyaswamy, V., and Logesh, R. 2017. "Adaptive Knn Based
Recommender System through Mining of User Preferences," Wireless Personal
Communications (97:2), pp. 2229-2247.
66. Sulaiman, N., Muhammad, A. M., Ganapathy, N. N. D. F., Khairuddin, Z., and
Othman, S. 2017. "A Comparison of Students` Performances Using Audio Only
and Video Media Methods," English language teaching (10:7), pp. 210-215.
67. Taylor, B. J., and Hasler, B. P. 2018. "Chronotype and Mental Health: Recent
Advances," Current psychiatry reports (20:8), pp. 1-10.
68. Thales,2021. PySpeech [Source code]
https://github.com/thalesaguiar21/PySpeech (Last access date 2022/07)
69. Thorat, P. B., Goudar, R., and Barve, S. 2015. "Survey on Collaborative Filtering,
Content-Based Filtering and Hybrid Recommendation System," International
Journal of Computer Applications (110:4), pp. 31-36.
80
70. Tsagkias, M., Larson, M., and De Rijke, M. 2010. "Predicting Podcast Preference:
An Analysis Framework and Its Application," Journal of the American Society for
information Science and Technology (61:2), pp. 374-391.
71. Volkovs, M., Yu, G. W., and Poutanen, T. 2017. "Content-Based Neighbor
Models for Cold Start in Recommender Systems," in Proceedings of the
Recommender Systems Challenge 2017. pp. 1-6.
72. Volokhin, S., and Agichtein, E. 2018. "Understanding Music Listening Intents
During Daily Activities with Implications for Contextual Music
Recommendation," Proceedings of the 2018 Conference on Human Information
Interaction & Retrieval, pp. 313-316.
73. Wang, D., Zhang, X., Yu, D., Xu, G., and Deng, S. 2020a. "Came: Content-and
Context-Aware Music Embedding for Recommendation," IEEE transactions on
neural networks and learning systems (32:3), pp. 1375-1388.
74. Wang, R., Ma, X., Jiang, C., Ye, Y., and Zhang, Y. 2020b. "Heterogeneous
Information Network-Based Music Recommendation System in Mobile
Networks," Computer Communications (150), pp. 429-437.
75. Wang, X., Rosenblum, D., and Wang, Y. 2012. "Context-Aware Mobile Music
Recommendation for Daily Activities," Proceedings of the 20th ACM
international conference on Multimedia, pp. 99-108.
76. Xing, Z., Parandehgheibi, M., Xiao, F., Kulkarni, N., and Pouliot, C. 2016.
"Content-Based Recommendation for Podcast Audio-Items Using Natural
Language Processing Techniques," 2016 IEEE International Conference on Big
Data (Big Data): IEEE, pp. 2378-2383.
77. Xu, L., Wen, X., Shi, J., Li, S., Xiao, Y., Wan, Q., and Qian, X. 2021. "Effects of
Individual Factors on Perceived Emotion and Felt Emotion of Music: Based on
Machine Learning Methods," Psychology of Music (49:5), pp. 1069-1087.
78. Xu, X., Dutta, K., and Ge, C. 2018. "Do Adjective Features from User Reviews
Address Sparsity and Transparency in Recommender Systems?," Electronic
Commerce Research and Applications (29), pp. 113-123.
79. Yang, L., Sobolev, M., Wang, Y., Chen, J., Dunne, D., Tsangouri, C., Dell, N.,
Naaman, M., and Estrin, D. 2019. "How Intention Informed Recommendations
Modulate Choices: A Field Study of Spoken Word Content," The World Wide Web
Conference, pp. 2169-2180.
80. Ye, B. K., Tu, Y. J. T., and Liang, T. P. 2019. "A Hybrid System for Personalized
Content Recommendation," Journal of Electronic Commerce Research (20:2), pp.
91-104.
81. Yin, H., Cui, B., Li, J., Yao, J., and Chen, C. 2012. "Challenging the Long Tail
Recommendation," arXiv preprint arXiv:1205.6700).
82. Yu, T., Guo, J., Li, W., and Lu, M. 2021. "A Mixed Heterogeneous Factorization
Model for Non-Overlapping Cross-Domain Recommendation," Decision Support
Systems), p. 113625.
83. Zhang, H., Lu, Y., Gupta, S., and Zhao, L. 2014. "What Motivates Customers to
Participate in Social Commerce? The Impact of Technological Environments and
Virtual Customer Experiences," Information & Management (51:8), pp. 1017-
1030.
84. Zhu, Y., Lin, J., He, S., Wang, B., Guan, Z., Liu, H., and Cai, D. 2019. "Addressing
the Item Cold-Start Problem by Attribute-Driven Active Learning," IEEE
Transactions on Knowledge and Data Engineering (32:4), pp. 631-644
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU202201103en_US