學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 基於強化學習下的餐廳機器人— 接待與送餐之應用
Restaurant Robot Based on Reinforcement Learning—Application of Reception and Delivery作者 鄭玉筠
Cheng, Yu-Yun貢獻者 蔡子傑
Tsai, Tzu-Chieh
鄭玉筠
Cheng, Yu-Yun關鍵詞 強化學習近端策略優化(RL-PPO)演算法
馬可夫決策過程
局部觀測
餐廳機器人
接待與送餐
Reinforcement Learning—Proximal Policy Optimization Algorithm
Markov Decision Process
Partially Observable
Robot of Restaurant
Reception and Delivery日期 2023 上傳時間 9-三月-2023 18:26:04 (UTC+8) 摘要 台灣在2020年人口首度呈現負成長,少子化已經成為產業人力缺口的重大問題;又或是有高度傳染性疾病流行時,人與人之間可能也不適合有太多接觸。餐飲服務業面臨上述的問題,若是能導入自動化AI系統,使用服務機器人來取代部分的人力,負責接待與送餐任務,就可以減輕人力不足與減少傳染性疾病的感染風險。餐廳若是有多個機器人的服務系統,透過工作排程,可以同時去完成不同的任務,不但可以減少人力運用,也可以具有較高的顧客滿意度的優勢。本文提出基於強化學習近端策略優化(RL-PPO)演算法的多個機器人服務系統的訓練框架,探索用於建構能夠減少人力的自動智慧餐廳的可能性。系統整合OpenAI Gym與Pygame 做為模擬環境,運用RL-PPO演算法的技術,並在最終階段類比成效。在本文中,我們對餐廳服務機器人系統進行建立模型,我們是以增加服務顧客的數量與減少顧客等待的時間為評估指標,而這與路徑規劃的距離會有正相關,在這樣的框架下,還可以進一步優化其他的指標:例如顧客的滿意度、員工每工時的勞動生產率等。我們針對這二項評估指標優化,因為問題涉及順序決策,同時也需要實時決策,所以我們將二項服務任務建模為馬可夫決策過程,採用RL-PPO演算法來解決該問題。本文模擬系統針對服務顧客數量與顧客等待時間二項指標的優化,證明經過本系統RL-PPO演算法架構下訓練的機器人系統,只需要餐廳的局部觀測資訊,通過自我學習,即可以維持餐廳服務機器人的服務效能。意即在餐廳臨時因應服務硬體佈局有所調整時,餐廳機器人從事接待與送餐工作時,也不需要更改系統或架構,餐廳機器人還是可以運作。這樣的框架系統,更具有靈活性、泛化性與穩定性,可以做為未來次世代的餐廳服務機器人系統的應用。
In 2020, Taiwan`s population showed negative growth for the first time, and the declining birth rate has become a major problem for the industry`s manpower shortage; or when there are highly contagious diseases, it may not be suitable for too much contact between people. The catering service industry is facing the above-mentioned problems. If an automated AI system can be introduced with service robots for reception and delivery tasks, the shortage of manpower and the risk of infection of epidemic diseases can be alleviated. If a restaurant has such a service system with multiple robots, different tasks can be completed at the same time through appropriate job scheduling. Thus it can not only reduce the use of manpower, but also have the advantage of higher customer satisfaction.This thesis proposes a training framework for the multiple robot service system based on the Reinforcement Learning—Proximal Policy Optimization (RL-PPO) algorithm. It explores the possibility of constructing an automatic smart restaurant that can reduce manpower. We use OpenAI Gym and Pygame as the simulation environment. We build a model for the restaurant service robot system to evaluate the performance. The waiting time of customers versus number of serving customers is considered, which will be positively correlated with the robot working distance of path planning. Other indicators can also be further optimized, such as customer satisfaction, employee productivity per working hour, etc. In order to optimize the two evaluation indicators, sequential and real-time decision-makings are required. We model it as a Markov Decision Process, and use the RL-PPO algorithm to solve this problem.We also prove that the robot system trained under the RL-PPO algorithm framework of this system only needs part of the observation information of the restaurant, and can maintain the efficiency through robot self-learning. That is to say, when the restaurant temporarily adjusts the service hardware layout, the restaurant robot can still operate without changing the system. Such a framework system is more stable, flexible and generalizable, and can be used as an application in the next generation of restaurant service robot systems in the future.參考文獻 [1] A. M. Turing (1950). Computing Machinery and Intelligence. Mind, New Series, 59(236), 433-460.[2] David Silver (2016). Tutorial: Deep Reinforcement Learning[3] Chathurangi Shyalika, Thushari Silva, Asoka Karunananda (2020). Reinforcement Learning in Dynamic Task Scheduling: A Review. SN Computer Science, 1(6), 306[4] Byrd, K.、Fan, A. et al. (2021). Robot vs human: expectations, performances and gaps in off-premise restaurant service modes. International Journal of Contemporary Hospitality Management, 11(33), 3996-4016[5] Jun Yang, Xinghui You et al. (2019). Application of reinforcement learning in UAV cluster task scheduling, Future Generation Computer Systems, 95, 140-148[6] Tingxiang Fan, Pinxin Long et al. (2020). Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. SAGE Journals[7] Takeshi Shimmura, Ryosuke Ichikari et al. (2020). Service robot introduction to a restaurant enhances both labor productivity and service quality. Procedia CIRP, 88, 589-594[8] Ruijun Yang, Liang Cheng, (2019). Path Planning of Restaurant Service Robot Based on A-star Algorithms with Updated Weights. 2019 12th International Symposium on Computational Intelligence and Design (ISCID)[9] Thanh Thi Nguyen, Ngoc Duy Nguyen et al. (2020). Deep Reinforcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications. IEEE Transactions on Cybernetics (Volume: 50, Issue: 9)[10] Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.[11] Thorndike, E. L. (1898). Animal intelligence: an experimental study of the associate processes in animals. American Psychologist, 53(10), 1125-1127.[12] Deng, L., and Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7(34), 197-387.[13] Min-Gyu Kim, Heeyoon Yoon et al. (2021).Investigating Frontline Service Employees to Identify Behavioral Goals of Restaurant Service Robot: An Exploratory Study. 2021 18th International Conference on Ubiquitous Robots (UR)[14] Prejitha.CT, Vikram Raj.N et al. (2020). Design of Restaurant Service Robot for Contact less and Hygienic Eating Experience. International Research Journal of Engineering and Technology (IRJET), 07(08), 2938-2943[15] OpenAI (Christopher Berner, Greg Brockman, et al. (2021). Dota 2 with Large Scale Deep Reinforcement Learning. arVix:1912.06680v1[16] K. Lakshmi Narayanan, et al. (2021). Fuzzy Guided Autonomous Nursing Robot through Wireless Beacon Network. Multimedia Tools and Applications, doi: 10.1007/s11042-021-11264-6[17] Lai, Chien-Jung; Tsai, Ching-Pei (2018). Design of Introducing Service Robot into Catering Services. Proceedings of the 2018 International Conference on Service Robotics Technologies, 62-66, doi:10.1145/3208833.3208837[18] Osman El-Said, Sara Al Hajri. (2022). Are customers happy with robot service? Investigating satisfaction with robot service restaurants during the COVID-19 pandemic. Heliyon 8(10), doi:10.1016/j.heliyon.2022.e08986[19] Hideharu Ouchi, Ryosuke Ueno et al. (2019). Development of Robot Restaurant Simulator. 2019 16th International Conference on Ubiquitous Robots[20] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347[21] Vanessa Hayes et al. (2019). Human origins in a southern African palaeo-wetland and first migrations. Nature[22] Thorndike, E. L. (1898). Animal intelligence: an experimental study of the associate processes in animals. American Psychologist, 53(10), 1125-1127.[23] Minsky, M. L. (1954). Theory of neural-analog reinforcement systems and its application to the brain model problem. Princeton University.[24] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of Go with deep neural networks and tree search. nature 529, 484.[25] Beakcheol Jang, Myeonghwi Kim, et al. (2019). Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE Access, 7[26] Schulman, John, et al. (2015). Trust Region Policy Optimization. arXiv:1502.05477 描述 碩士
國立政治大學
資訊科學系碩士在職專班
109971017資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109971017 資料類型 thesis dc.contributor.advisor 蔡子傑 zh_TW dc.contributor.advisor Tsai, Tzu-Chieh en_US dc.contributor.author (作者) 鄭玉筠 zh_TW dc.contributor.author (作者) Cheng, Yu-Yun en_US dc.creator (作者) 鄭玉筠 zh_TW dc.creator (作者) Cheng, Yu-Yun en_US dc.date (日期) 2023 en_US dc.date.accessioned 9-三月-2023 18:26:04 (UTC+8) - dc.date.available 9-三月-2023 18:26:04 (UTC+8) - dc.date.issued (上傳時間) 9-三月-2023 18:26:04 (UTC+8) - dc.identifier (其他 識別碼) G0109971017 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/143784 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊科學系碩士在職專班 zh_TW dc.description (描述) 109971017 zh_TW dc.description.abstract (摘要) 台灣在2020年人口首度呈現負成長,少子化已經成為產業人力缺口的重大問題;又或是有高度傳染性疾病流行時,人與人之間可能也不適合有太多接觸。餐飲服務業面臨上述的問題,若是能導入自動化AI系統,使用服務機器人來取代部分的人力,負責接待與送餐任務,就可以減輕人力不足與減少傳染性疾病的感染風險。餐廳若是有多個機器人的服務系統,透過工作排程,可以同時去完成不同的任務,不但可以減少人力運用,也可以具有較高的顧客滿意度的優勢。本文提出基於強化學習近端策略優化(RL-PPO)演算法的多個機器人服務系統的訓練框架,探索用於建構能夠減少人力的自動智慧餐廳的可能性。系統整合OpenAI Gym與Pygame 做為模擬環境,運用RL-PPO演算法的技術,並在最終階段類比成效。在本文中,我們對餐廳服務機器人系統進行建立模型,我們是以增加服務顧客的數量與減少顧客等待的時間為評估指標,而這與路徑規劃的距離會有正相關,在這樣的框架下,還可以進一步優化其他的指標:例如顧客的滿意度、員工每工時的勞動生產率等。我們針對這二項評估指標優化,因為問題涉及順序決策,同時也需要實時決策,所以我們將二項服務任務建模為馬可夫決策過程,採用RL-PPO演算法來解決該問題。本文模擬系統針對服務顧客數量與顧客等待時間二項指標的優化,證明經過本系統RL-PPO演算法架構下訓練的機器人系統,只需要餐廳的局部觀測資訊,通過自我學習,即可以維持餐廳服務機器人的服務效能。意即在餐廳臨時因應服務硬體佈局有所調整時,餐廳機器人從事接待與送餐工作時,也不需要更改系統或架構,餐廳機器人還是可以運作。這樣的框架系統,更具有靈活性、泛化性與穩定性,可以做為未來次世代的餐廳服務機器人系統的應用。 zh_TW dc.description.abstract (摘要) In 2020, Taiwan`s population showed negative growth for the first time, and the declining birth rate has become a major problem for the industry`s manpower shortage; or when there are highly contagious diseases, it may not be suitable for too much contact between people. The catering service industry is facing the above-mentioned problems. If an automated AI system can be introduced with service robots for reception and delivery tasks, the shortage of manpower and the risk of infection of epidemic diseases can be alleviated. If a restaurant has such a service system with multiple robots, different tasks can be completed at the same time through appropriate job scheduling. Thus it can not only reduce the use of manpower, but also have the advantage of higher customer satisfaction.This thesis proposes a training framework for the multiple robot service system based on the Reinforcement Learning—Proximal Policy Optimization (RL-PPO) algorithm. It explores the possibility of constructing an automatic smart restaurant that can reduce manpower. We use OpenAI Gym and Pygame as the simulation environment. We build a model for the restaurant service robot system to evaluate the performance. The waiting time of customers versus number of serving customers is considered, which will be positively correlated with the robot working distance of path planning. Other indicators can also be further optimized, such as customer satisfaction, employee productivity per working hour, etc. In order to optimize the two evaluation indicators, sequential and real-time decision-makings are required. We model it as a Markov Decision Process, and use the RL-PPO algorithm to solve this problem.We also prove that the robot system trained under the RL-PPO algorithm framework of this system only needs part of the observation information of the restaurant, and can maintain the efficiency through robot self-learning. That is to say, when the restaurant temporarily adjusts the service hardware layout, the restaurant robot can still operate without changing the system. Such a framework system is more stable, flexible and generalizable, and can be used as an application in the next generation of restaurant service robot systems in the future. en_US dc.description.tableofcontents 目次致謝 i摘要 iiABSTRACT iii目次 v表次 vi圖次 vii第一章 緒論 1第一節 論文介紹 1第二節 研究動機與目的 2第三節 文獻探討 4第四節 論文架構 8第二章 基礎理論介紹 10第一節 強化學習 10第二節 近端策略優化演算法(PPO) 14第三節 最短路徑規畫:A-Star演算法 17第三章 模擬系統架構 19第一節 模擬環境 19第二節 模擬系統架構 22第四章 實驗設計與結果分析 31第一節 實驗設計 31第二節 結果分析 33第五章 結論與未來展望 48參考文獻 49表次表1 系統環境模型參數表 24表2 系統中PPO演算法的參數設定表 26表3 模擬系統中隨機環境參數表 28表4 模擬系統中障礙物隨機參數表 29表5 餐廳固定模式下平均顧客等待時間統計表 35表6 餐廳固定模式下服務顧客數量與機器人平均移動距離表 36表7 餐廳固定模式下中央排程系統之效能比較表 38表8 餐廳隨機模式下平均顧客等待時間統計表 42表9 餐廳隨機模式下服務顧客數量與機器人平均移動距離統計表 42表10 餐廳隨機障礙物模式下平均顧客等待時間比較表 44表11 餐廳隨機模式下服務顧客數量與機器人平均移動距離統計表 44圖次圖1 人工智慧與機器學習與強化學習的關係圖 11圖2 強化學習方法圖 12圖3 強化學習演算法的分類圖 12圖4 Q Learning 演算法原型 13圖5 Actor-Critic方法 14圖6 PPO演算法 15圖7 TRPO[26]與PPO[20]演算法 16圖8 PPO2[20]演算法 16圖9 PPO演算法[20] 17圖10 A*演算法公式計算推導圖 18圖11 模擬系統與角色間的互動關係圖 19圖12 餐廳配置圖 20圖13 顧客與中央排程系統互動關係圖 21圖14 餐廳服務機器人與中央排程系統互動關係圖 22圖15 餐廳服務機器人與顧客與中央排程狀態轉換模型圖 23圖16 PPO架構下-中央排程系統的深度神經網路圖 25圖17 PPO架構下-服務機器人系統的深度神經網路圖 25圖18 Agent, Environment, Reward的關係圖 27圖19 模擬系統強化學習PPO演算法 27圖20 餐廳固定模式下中央排程系統的平均Rewards 34圖21 餐廳固定模式下服務機器人路徑規劃系統之機器人平均Rewards 34圖22 餐廳固定模式下RL-PPO組之模擬系統影片截圖 35圖23 餐廳固定模式下平均顧客等待時間比較圖 36圖24 餐廳固定模式下服務顧客數量與機器人平均移動距離圖 36圖25 RL-PPO組的機器人足跡圖 37圖26 類比實驗組-FIFO+A*的機器人足跡圖 37圖27 餐廳固定模式下中央排程系統之效能比較圖 38圖28 餐廳隨機模式下中央排程系統的平均Rewards 39圖29 餐廳隨機模式下服務機器人路徑規劃系統之機器人平均Rewards 40圖30 餐廳隨機模式下A*組之模擬系統影片截圖 41圖31 餐廳隨機模式下RL-PPO組之模擬系統影片截圖 41圖32 餐廳隨機模式下RL-PPO組之模擬系統影片截圖 41圖33 餐廳隨機模式下平均顧客等待時間比較圖 42圖34 餐廳隨機模式下服務顧客數量與機器人平均移動距離圖 42圖35 餐廳隨機障礙物模式下平均顧客等待時間比較圖 44圖36 餐廳隨機障礙物模式下服務顧客數量與機器人平均移動距離圖 44圖37 餐廳隨機障礙物模式下RL-PPO組之模擬系統影片截圖 45圖38 違法行為對機器人平均顧客等待時間影響 46圖39 共享模型與否對機器人的平均顧客等待時間之影響 47 zh_TW dc.format.extent 3089861 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109971017 en_US dc.subject (關鍵詞) 強化學習近端策略優化(RL-PPO)演算法 zh_TW dc.subject (關鍵詞) 馬可夫決策過程 zh_TW dc.subject (關鍵詞) 局部觀測 zh_TW dc.subject (關鍵詞) 餐廳機器人 zh_TW dc.subject (關鍵詞) 接待與送餐 zh_TW dc.subject (關鍵詞) Reinforcement Learning—Proximal Policy Optimization Algorithm en_US dc.subject (關鍵詞) Markov Decision Process en_US dc.subject (關鍵詞) Partially Observable en_US dc.subject (關鍵詞) Robot of Restaurant en_US dc.subject (關鍵詞) Reception and Delivery en_US dc.title (題名) 基於強化學習下的餐廳機器人— 接待與送餐之應用 zh_TW dc.title (題名) Restaurant Robot Based on Reinforcement Learning—Application of Reception and Delivery en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] A. M. Turing (1950). Computing Machinery and Intelligence. Mind, New Series, 59(236), 433-460.[2] David Silver (2016). Tutorial: Deep Reinforcement Learning[3] Chathurangi Shyalika, Thushari Silva, Asoka Karunananda (2020). Reinforcement Learning in Dynamic Task Scheduling: A Review. SN Computer Science, 1(6), 306[4] Byrd, K.、Fan, A. et al. (2021). Robot vs human: expectations, performances and gaps in off-premise restaurant service modes. International Journal of Contemporary Hospitality Management, 11(33), 3996-4016[5] Jun Yang, Xinghui You et al. (2019). Application of reinforcement learning in UAV cluster task scheduling, Future Generation Computer Systems, 95, 140-148[6] Tingxiang Fan, Pinxin Long et al. (2020). Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. SAGE Journals[7] Takeshi Shimmura, Ryosuke Ichikari et al. (2020). Service robot introduction to a restaurant enhances both labor productivity and service quality. Procedia CIRP, 88, 589-594[8] Ruijun Yang, Liang Cheng, (2019). Path Planning of Restaurant Service Robot Based on A-star Algorithms with Updated Weights. 2019 12th International Symposium on Computational Intelligence and Design (ISCID)[9] Thanh Thi Nguyen, Ngoc Duy Nguyen et al. (2020). Deep Reinforcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications. IEEE Transactions on Cybernetics (Volume: 50, Issue: 9)[10] Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.[11] Thorndike, E. L. (1898). Animal intelligence: an experimental study of the associate processes in animals. American Psychologist, 53(10), 1125-1127.[12] Deng, L., and Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7(34), 197-387.[13] Min-Gyu Kim, Heeyoon Yoon et al. (2021).Investigating Frontline Service Employees to Identify Behavioral Goals of Restaurant Service Robot: An Exploratory Study. 2021 18th International Conference on Ubiquitous Robots (UR)[14] Prejitha.CT, Vikram Raj.N et al. (2020). Design of Restaurant Service Robot for Contact less and Hygienic Eating Experience. International Research Journal of Engineering and Technology (IRJET), 07(08), 2938-2943[15] OpenAI (Christopher Berner, Greg Brockman, et al. (2021). Dota 2 with Large Scale Deep Reinforcement Learning. arVix:1912.06680v1[16] K. Lakshmi Narayanan, et al. (2021). Fuzzy Guided Autonomous Nursing Robot through Wireless Beacon Network. Multimedia Tools and Applications, doi: 10.1007/s11042-021-11264-6[17] Lai, Chien-Jung; Tsai, Ching-Pei (2018). Design of Introducing Service Robot into Catering Services. Proceedings of the 2018 International Conference on Service Robotics Technologies, 62-66, doi:10.1145/3208833.3208837[18] Osman El-Said, Sara Al Hajri. (2022). Are customers happy with robot service? Investigating satisfaction with robot service restaurants during the COVID-19 pandemic. Heliyon 8(10), doi:10.1016/j.heliyon.2022.e08986[19] Hideharu Ouchi, Ryosuke Ueno et al. (2019). Development of Robot Restaurant Simulator. 2019 16th International Conference on Ubiquitous Robots[20] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347[21] Vanessa Hayes et al. (2019). Human origins in a southern African palaeo-wetland and first migrations. Nature[22] Thorndike, E. L. (1898). Animal intelligence: an experimental study of the associate processes in animals. American Psychologist, 53(10), 1125-1127.[23] Minsky, M. L. (1954). Theory of neural-analog reinforcement systems and its application to the brain model problem. Princeton University.[24] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of Go with deep neural networks and tree search. nature 529, 484.[25] Beakcheol Jang, Myeonghwi Kim, et al. (2019). Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE Access, 7[26] Schulman, John, et al. (2015). Trust Region Policy Optimization. arXiv:1502.05477 zh_TW