學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 以人工智能改善診所醫療資訊系統之探索性研究
An Exploratory Study on Enhancing Clinic Medical Information Systems through Artificial Intelligence
作者 林永欣
Lin, Yung-Hsin
貢獻者 于卓民
Yu, Chwo-Ming
林永欣
Lin, Yung-Hsin
關鍵詞 醫療資訊系統
人工智能
病歷撰寫
醫師痛點
Health Information Systems
Artificial Intelligence
Medical Record Documentation
Physician Pain Points
日期 2023
上傳時間 1-九月-2023 15:02:28 (UTC+8)
參考文獻 中文參考文獻

王若樸 (2023) 。全臺最大醫療IT革新來臨,衛福部揭次世代HIS平臺大架構。iThome。取自 https://www.ithome.com.tw/people/157241

余啟民 (2022) 。醫療人工智慧應用爭議與法制規範課題。東吳法律學報,34 (2),25-63。

李鍾熙 (2023年7月7日) 。李鍾熙:醫療AI新創的未來。財訊。取自
https://www.wealth.com.tw/articles/4db98d18-e0e9-45aa-af89-8f6434c25e01

郭年真、賴飛羆、李鎮宜、陳宛琪、俞志欣、古乙岑、歐陽良孟、張婷 (2017) 。智慧醫療關鍵議題與對策之研究結案報告 (NDC105006-1) [報告]。國立臺灣大學。取自 https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvNTY0NC8yNzE1OC8xZDIwZjcwYS00YzhlLTQwZWQtYWY4ZC0xZmM1NWIxMDI0OWUucGRm&n=5pm65oWn6Yar55mCX%2Be1kOahiOWgseWRil8yMDE3MDQxMV9SMi5wZGY%3D&icon=..pdf

劉宜廉 (2007) 。病歷記載相關法律問題。醫療品質雜誌,1(2),83-89。

衛生福利部 (2022) 。中華民國 110 年醫療機構現況及醫院醫療服務量統計年報。取自 https://dep.mohw.gov.tw/DOS/lp-5099-113.html
簡守偉、詹慶年、林克政、洪鴻章 (2016) 。衛生福利部醫院醫療資訊系統之歷史與發展。醫學與健康雜誌,5 (1),111-124。

許惠恒 (2021)。 38年老公家醫院,如何變成人人懂AI的智慧醫院?中榮花錢讓員工做這件事。未來城市@天下網路書店。取自
https://futurecity.cw.com.tw/article/2119

英文參考文獻

Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018 Aug 28;1:39. doi: 10.1038/s41746-018-0040-6. PMID: 31304320; PMCID: PMC6550188.

Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, Faix DJ, Goodman AM, Longhurst CA, Hogarth M, Smith DM. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern Med. 2023 Jun 1;183(6):589-596. doi: 10.1001/jamainternmed.2023.1838.

Chi, E. A., Chi, G., Tsui, T., Ng, R., Jiang, H., Jarr, K., Kulkarni, O., Sinha, S., Zhang, Y., & Long, J. (2021). Development and Validation of an AI System for Review of Patient Records. JAMA Network Open, 4(7), https://doi.org/10.1001/jamanetworkopen.2021.17391

Colleen, M. F. (1970). General Requirements for a Medical Information System. Computers and Biomedical Research, 3(4), 393-406.

Duening, T. N., Hisrich, R. A., & Lechter, M. A. (2014). Technology Entrepreneurship:Taking Innovation to the Marketplace (2nd ed.). Academic Press.

Deloitte. (2018). Electronic health records: Can the pain shift to value for physicians? Deloitte 2018 Survey of US Physicians, https://drive.google.com/file/d/1cbOnpcHV5W7XmhJyKB2_OyLyKhRP3AaW/view

Elsevier Inc. (2023). ChatGPT: The next-gen tool for triaging? American Journal of Emergency Medicine, 41(10), 187-188. https://doi.org/10.1016/j.ajem.2023.03.027

G.S. Sureshchandar Chandrasekharan Rajendran R.N. Anantharaman, (2002),"The relationship between service quality and customer satisfaction – a factor specific approach", Journal of Services Marketing, Vol. 16 Iss 4 pp. 363 - 379

Jorge Ribeiro, Rui Lima, Tiago Eckhardt, Sara Paiva(2021)Robotic Process Automation and Artificial Intelligence in Industry 4.0 – A Literature review,Procedia Computer Science,Volume 181, 2021, Pages 51-58, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.01.104.

Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). Attractive quality and must-be quality. Hinshitsu (Quality, the Journal of Japanese Society for Quality Control), 14(2), 39-48.

Keogh, G. L. (2013). The listing and categorization methods for simplifying the identification of customer pain points. Master`s thesis, Saint Louis University.

Lee P, Bubeck S, Petro J. Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N Engl J Med. 2023 Mar 30;388(13):1233-1239. doi: 10.1056/NEJMsr2214184. PMID: 36988602.

Matzler, Kurt & Sauerwein, Elmar. (2002). The Factor Structure of Customer Satisfaction: An Empirical Test of the Importance Grid and the Penalty-Reward-Contrast Analysis. International Journal of Service Industry Management. 13. 314-332

Mehdipour, Y., & Zerehkafi, H. (2013). Hospital Information System (HIS): At a Glance. Asian Journal of Computer and Information Systems, 1(2), 54-61.

Na, S., Heo, S., Han, S., Shin, Y., & Roh, Y. (2022). Acceptance Model of Artificial Intelligence (AI)-Based Technologies in Construction Firms: Applying the Technology Acceptance Model (TAM) in Combination with the Technology–Organisation–Environment (TOE) Framework. Buildings, 12 (2), https://doi.org/10.3390/buildings12020090

OpenAI. (2021). GPT-4 Technical Report. Retrieved from https://openai.com/research/

Oliver Alexander Gansser, Christina Stefanie Reich, A new acceptance model for artificial intelligence with extensions to UTAUT2: An empirical study in three segments of application, Technology in Society, Volume 65, 2021, 101535, ISSN 0160-791X, https://doi.org/10.1016/j.techsoc.2021.101535.
Osterwalder, A., Pigneur, Y., Bernarda, G., & Smith, A. (2014). Value Proposition Design(pp. 50-52).John Wiley & Sons.

Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA Jr, Hasegawa K. Emergency department triage prediction of clinical outcomes using machine learning models. Crit Care. 2019 Feb 22;23(1):64. doi: 10.1186/s13054-019-2351-7. PMID: 30795786; PMCID: PMC6387562.

Sauerwein, E., Bailom, F., Matzler, K., & Hinterhuber, H. H. (1996). The Kano model: How to delight your customers. Preprints Volume I of the IX International Working Seminar on Production Economics, Innsbruck/Igls/Austria, February , 313-327.

Salminen, J., Mustak, M., Corporan, J., Jung, S., & Jansen, B. J. (2022). Detecting Pain Points from User-Generated Social Media Posts Using Machine Learning. Journal of Interactive Marketing, 57(3), 517–539. https://doi.org/10.1177/10949968221095556

Smith, J. (2019). Creating Your Venture. Entrepreneurship Quarterly, 4(1), 1-20.

Spatharou, A., Hieronimus, S., & Jenkins, J. (2020). Transforming healthcare with AI: The impact on the workforce and organizations. McKinsey & Company. Retrieved from https://www.mckinsey.com/industries/healthcare/our-insights/transforming-healthcare-with-ai

Sven Laumer, Christian Maier & Tim Weitzel (2017) Information quality, user satisfaction, and the manifestation of workarounds: a qualitative and quantitative study of enterprise content management system users, European Journal of Information Systems, 26:4, 333-360, DOI: 10.1057/s41303-016-0029-7

The Physicians Foundation. (2018). 2018 Survey of America’s Physicians: Practice Patterns and Perspectives. Merritt Hawkins.

Wang, Y., Chen, J., Chen, L., & Dai, X. (2019). Prediction of diabetic kidney disease progression with big data machine learning using electronic medical record. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-48263-5

Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information systems research, 16(1), 85-102.

Xiong, H., Wang, S., Zhu, Y., Zhao, Z., Liu, Y., Huang, L., Wang, Q., & Shen, D. (2023). DoctorGLM: Fine-tuning your Chinese Doctor is not a Herculean Task. arXiv:2304.01097 [cs.CL]. https://doi.org/10.48550/arXiv.2304.01097
描述 碩士
國立政治大學
企業管理研究所(MBA學位學程)
110363099
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110363099
資料類型 thesis
dc.contributor.advisor 于卓民zh_TW
dc.contributor.advisor Yu, Chwo-Mingen_US
dc.contributor.author (作者) 林永欣zh_TW
dc.contributor.author (作者) Lin, Yung-Hsinen_US
dc.creator (作者) 林永欣zh_TW
dc.creator (作者) Lin, Yung-Hsinen_US
dc.date (日期) 2023en_US
dc.date.accessioned 1-九月-2023 15:02:28 (UTC+8)-
dc.date.available 1-九月-2023 15:02:28 (UTC+8)-
dc.date.issued (上傳時間) 1-九月-2023 15:02:28 (UTC+8)-
dc.identifier (其他 識別碼) G0110363099en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146927-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 企業管理研究所(MBA學位學程)zh_TW
dc.description (描述) 110363099zh_TW
dc.description.tableofcontents 目錄
第一章 緒論 1
第一節、研究背景與動機 1
第二節、研究問題與目的 3
第三節、研究流程與章節簡介 4
第二章 文獻回顧 6
第一節、顧客痛點 6
第二節、醫療資訊系統簡介 9
第三節、人工智能在醫療領域相關應用 13
第四節、結論 15
第三章 研究方法 17
第一節、研究架構 17
第二節、研究方法 21
第四章 資料分析與整理 24
第一節、醫師訪談分析 24
第二節、專家訪談分析 33
第三節、訪談分析總結 40
第五章 結論與建議 44
第一節、研究結論 44
第二節、研究建議 47
第三節、研究限制及後續研究建議 48
參考文獻 50
zh_TW
dc.format.extent 1625046 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110363099en_US
dc.subject (關鍵詞) 醫療資訊系統zh_TW
dc.subject (關鍵詞) 人工智能zh_TW
dc.subject (關鍵詞) 病歷撰寫zh_TW
dc.subject (關鍵詞) 醫師痛點zh_TW
dc.subject (關鍵詞) Health Information Systemsen_US
dc.subject (關鍵詞) Artificial Intelligenceen_US
dc.subject (關鍵詞) Medical Record Documentationen_US
dc.subject (關鍵詞) Physician Pain Pointsen_US
dc.title (題名) 以人工智能改善診所醫療資訊系統之探索性研究zh_TW
dc.title (題名) An Exploratory Study on Enhancing Clinic Medical Information Systems through Artificial Intelligenceen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 中文參考文獻

王若樸 (2023) 。全臺最大醫療IT革新來臨,衛福部揭次世代HIS平臺大架構。iThome。取自 https://www.ithome.com.tw/people/157241

余啟民 (2022) 。醫療人工智慧應用爭議與法制規範課題。東吳法律學報,34 (2),25-63。

李鍾熙 (2023年7月7日) 。李鍾熙:醫療AI新創的未來。財訊。取自
https://www.wealth.com.tw/articles/4db98d18-e0e9-45aa-af89-8f6434c25e01

郭年真、賴飛羆、李鎮宜、陳宛琪、俞志欣、古乙岑、歐陽良孟、張婷 (2017) 。智慧醫療關鍵議題與對策之研究結案報告 (NDC105006-1) [報告]。國立臺灣大學。取自 https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvNTY0NC8yNzE1OC8xZDIwZjcwYS00YzhlLTQwZWQtYWY4ZC0xZmM1NWIxMDI0OWUucGRm&n=5pm65oWn6Yar55mCX%2Be1kOahiOWgseWRil8yMDE3MDQxMV9SMi5wZGY%3D&icon=..pdf

劉宜廉 (2007) 。病歷記載相關法律問題。醫療品質雜誌,1(2),83-89。

衛生福利部 (2022) 。中華民國 110 年醫療機構現況及醫院醫療服務量統計年報。取自 https://dep.mohw.gov.tw/DOS/lp-5099-113.html
簡守偉、詹慶年、林克政、洪鴻章 (2016) 。衛生福利部醫院醫療資訊系統之歷史與發展。醫學與健康雜誌,5 (1),111-124。

許惠恒 (2021)。 38年老公家醫院,如何變成人人懂AI的智慧醫院?中榮花錢讓員工做這件事。未來城市@天下網路書店。取自
https://futurecity.cw.com.tw/article/2119

英文參考文獻

Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018 Aug 28;1:39. doi: 10.1038/s41746-018-0040-6. PMID: 31304320; PMCID: PMC6550188.

Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, Faix DJ, Goodman AM, Longhurst CA, Hogarth M, Smith DM. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern Med. 2023 Jun 1;183(6):589-596. doi: 10.1001/jamainternmed.2023.1838.

Chi, E. A., Chi, G., Tsui, T., Ng, R., Jiang, H., Jarr, K., Kulkarni, O., Sinha, S., Zhang, Y., & Long, J. (2021). Development and Validation of an AI System for Review of Patient Records. JAMA Network Open, 4(7), https://doi.org/10.1001/jamanetworkopen.2021.17391

Colleen, M. F. (1970). General Requirements for a Medical Information System. Computers and Biomedical Research, 3(4), 393-406.

Duening, T. N., Hisrich, R. A., & Lechter, M. A. (2014). Technology Entrepreneurship:Taking Innovation to the Marketplace (2nd ed.). Academic Press.

Deloitte. (2018). Electronic health records: Can the pain shift to value for physicians? Deloitte 2018 Survey of US Physicians, https://drive.google.com/file/d/1cbOnpcHV5W7XmhJyKB2_OyLyKhRP3AaW/view

Elsevier Inc. (2023). ChatGPT: The next-gen tool for triaging? American Journal of Emergency Medicine, 41(10), 187-188. https://doi.org/10.1016/j.ajem.2023.03.027

G.S. Sureshchandar Chandrasekharan Rajendran R.N. Anantharaman, (2002),"The relationship between service quality and customer satisfaction – a factor specific approach", Journal of Services Marketing, Vol. 16 Iss 4 pp. 363 - 379

Jorge Ribeiro, Rui Lima, Tiago Eckhardt, Sara Paiva(2021)Robotic Process Automation and Artificial Intelligence in Industry 4.0 – A Literature review,Procedia Computer Science,Volume 181, 2021, Pages 51-58, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.01.104.

Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). Attractive quality and must-be quality. Hinshitsu (Quality, the Journal of Japanese Society for Quality Control), 14(2), 39-48.

Keogh, G. L. (2013). The listing and categorization methods for simplifying the identification of customer pain points. Master`s thesis, Saint Louis University.

Lee P, Bubeck S, Petro J. Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N Engl J Med. 2023 Mar 30;388(13):1233-1239. doi: 10.1056/NEJMsr2214184. PMID: 36988602.

Matzler, Kurt & Sauerwein, Elmar. (2002). The Factor Structure of Customer Satisfaction: An Empirical Test of the Importance Grid and the Penalty-Reward-Contrast Analysis. International Journal of Service Industry Management. 13. 314-332

Mehdipour, Y., & Zerehkafi, H. (2013). Hospital Information System (HIS): At a Glance. Asian Journal of Computer and Information Systems, 1(2), 54-61.

Na, S., Heo, S., Han, S., Shin, Y., & Roh, Y. (2022). Acceptance Model of Artificial Intelligence (AI)-Based Technologies in Construction Firms: Applying the Technology Acceptance Model (TAM) in Combination with the Technology–Organisation–Environment (TOE) Framework. Buildings, 12 (2), https://doi.org/10.3390/buildings12020090

OpenAI. (2021). GPT-4 Technical Report. Retrieved from https://openai.com/research/

Oliver Alexander Gansser, Christina Stefanie Reich, A new acceptance model for artificial intelligence with extensions to UTAUT2: An empirical study in three segments of application, Technology in Society, Volume 65, 2021, 101535, ISSN 0160-791X, https://doi.org/10.1016/j.techsoc.2021.101535.
Osterwalder, A., Pigneur, Y., Bernarda, G., & Smith, A. (2014). Value Proposition Design(pp. 50-52).John Wiley & Sons.

Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA Jr, Hasegawa K. Emergency department triage prediction of clinical outcomes using machine learning models. Crit Care. 2019 Feb 22;23(1):64. doi: 10.1186/s13054-019-2351-7. PMID: 30795786; PMCID: PMC6387562.

Sauerwein, E., Bailom, F., Matzler, K., & Hinterhuber, H. H. (1996). The Kano model: How to delight your customers. Preprints Volume I of the IX International Working Seminar on Production Economics, Innsbruck/Igls/Austria, February , 313-327.

Salminen, J., Mustak, M., Corporan, J., Jung, S., & Jansen, B. J. (2022). Detecting Pain Points from User-Generated Social Media Posts Using Machine Learning. Journal of Interactive Marketing, 57(3), 517–539. https://doi.org/10.1177/10949968221095556

Smith, J. (2019). Creating Your Venture. Entrepreneurship Quarterly, 4(1), 1-20.

Spatharou, A., Hieronimus, S., & Jenkins, J. (2020). Transforming healthcare with AI: The impact on the workforce and organizations. McKinsey & Company. Retrieved from https://www.mckinsey.com/industries/healthcare/our-insights/transforming-healthcare-with-ai

Sven Laumer, Christian Maier & Tim Weitzel (2017) Information quality, user satisfaction, and the manifestation of workarounds: a qualitative and quantitative study of enterprise content management system users, European Journal of Information Systems, 26:4, 333-360, DOI: 10.1057/s41303-016-0029-7

The Physicians Foundation. (2018). 2018 Survey of America’s Physicians: Practice Patterns and Perspectives. Merritt Hawkins.

Wang, Y., Chen, J., Chen, L., & Dai, X. (2019). Prediction of diabetic kidney disease progression with big data machine learning using electronic medical record. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-48263-5

Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information systems research, 16(1), 85-102.

Xiong, H., Wang, S., Zhu, Y., Zhao, Z., Liu, Y., Huang, L., Wang, Q., & Shen, D. (2023). DoctorGLM: Fine-tuning your Chinese Doctor is not a Herculean Task. arXiv:2304.01097 [cs.CL]. https://doi.org/10.48550/arXiv.2304.01097
zh_TW