Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 離岸風電場選址關鍵因素研究
Key Factors of Offshore Wind Farm Site Selection
作者 李玟倩
Lee, Wen-Chien
貢獻者 孫振義<br>簡連貴
Sun, Chen-Yi<br>Chien, Lien-Kwei
李玟倩
Lee, Wen-Chien
關鍵詞 離岸風力發電
選址
關鍵因素
模糊德爾非法
層級分析法
Offshore wind farm
Site selection
Key factors
Fuzzy Delphi Method
Analytical Hierarchy Process
日期 2023
上傳時間 1-Sep-2023 15:15:17 (UTC+8)
摘要 近年來,伴隨著極端氣候事件發生的可能性和嚴重程度增加,以及暴露在極端化石燃料波動下的危險性日益增長,能源轉型勢在必行。在所有可再生能源中,風能是實現能源轉型的主角,安全且具有韌性。本研究發現,文獻回顧中大多數國家已指定不允許風電場開發的排除區域。臺灣有類似的作法,可見於「離岸風力發電規劃場址申請作業要點」和「離岸風力發電區塊開發場址規劃申請作業要點」。
然而,關鍵因素的擬定在於幫助識別通過排除區域的最佳開發地點。離岸風電場選址的關鍵因素至關重要,其訂定將得以最小化環境和海洋生態影響,並最大化開發潛力。
本研究旨在建立離岸風電場選址關鍵因素的整體結構,以協助臺灣在公正轉型下實現台灣在能源部門之淨零排放目。爰此,本研回顧世界各國的文獻及研究,得到了68個選址子因素。在與三位專家諮詢後,這些子因素被整合為44個,並作為模糊德爾菲問卷的基礎。其次,刪除五個未達到專家共識閾值的子因素,將其餘39個合併為35個,分屬於九個主因素和四大類別,並以此為AHP問卷的基礎。本研究進而分析了AHP問卷的數據,以建立離岸風電場選址關鍵因素的整體結構。
Due to the increase in the likelihood and severity of an extreme weather event and the increasing exposure to extreme fossil fuel volatility, it is necessary to carry out an energy transition. Among all renewable energy, wind energy is the protagonist of the secure and resilient energy transition. This research found that most countries reviewed have designated exclusion areas not allowed for wind farm development. Similar documents in Taiwan can be found at “Guidelines for Offshore Wind Power Generation Site Planning and Application Process” and “Guidelines for Offshore Wind Power Generation Zonal Development Site Planning and Application Process”.
However, the key factors are to help identify optimal development sites that pass the exclusion areas. It is crucial to identify the key factors involved in offshore wind farm siting to minimize environmental and marine ecological impacts and maximize development potential.
This research aims to establish the overall structure of these key factors to assist in achieving Taiwan’s Net-Zero Emissions goals through Just Transition in the energy sector. Therefore, this research conducted a comprehensive review of previous research and literature from around the world, resulting in 68 siting sub-factors. After consulting with three experts, the sub-factors were consolidated into 44 and used as the foundation of the FDM questionnaire. Five sub-factors that did not meet the expert consensus value threshold were then removed, and the remaining 39 sub-factors were merged into 35 sub-factors that fell under nine main factors and four categories, forming the basis of the AHP questionnaire. The study analyzed the data from the AHP questionnaires to establish the overall structure of the key factors of offshore wind farm site selection.
參考文獻 1 Books
Liang, S.W and Wu, P.L. (2016). Research Methods. New Taipei: Gao-lih.
Zhang, S.X. (2012). Fuzzy Multi-Criteria Decision Making for Evaluation Method. Taipei:
Wunan.
2 Journal Articles
American Clean Power. (2022). Wind Power Facts. Washington, DC: Author.
Amponsah, N. Y., Troldborg, M., Kington, B., Aalders, I., & Hough, R. L. (2014). Greenhouse
gas emissions from renewable energy sources: A review of lifecycle considerations.
Renewable and Sustainable Energy Reviews, 39, 461-475.
Bennett, N. J., Blythe, J., White, C. S., & Campero, C. (2021). Blue growth and blue justice:
Ten risks and solutions for the ocean economy. Marine Policy, 125, 104387.
Bonou, A., Laurent, A., & Olsen, S. I. (2016). Life cycle assessment of onshore and offshore
wind energy-from theory to application. Applied Energy, 180, 327-337.
Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative research
journal, 9(2):27-40.
Bureau of Energy. (2020). Energy Transition White Paper (Approved Version). Taipei: Ministry
of Economic Affairs.
Caceoğlu, E., Yildiz, H. K., Oğuz, E., Huvaj, N., & Guerrero, J. M. (2022). Offshore wind
power plant site selection using Analytical Hierarchy Process for Northwest Turkey.
Ocean Engineering, 252, 111178.
Deveci, M., Cali, U., Kucuksari, S., & Erdogan, N. (2020). Interval type-2 fuzzy sets based
multi-criteria decision-making model for offshore wind farm development in Ireland.
Energy, 198, 117317.
Deveci M., Özcan E., & John R. (2020). Offshore Wind Farms: A Fuzzy Approach to Site
Selection in a Black Sea Region. 2020 IEEE Texas Power and Energy Conference (TPEC),
1-6. doi: 10.1109/TPEC48276.2020.9042530.
Deveci, M., Pamucar, D., Cali, U., Kantar, E., Kölle, K., & Tande, J. O. (2022). Hybrid q-Rung
Orthopair Fuzzy Sets Based CoCoSo Model for Floating Offshore Wind Farm Site
Selection in Norway. CSEE Journal of Power and Energy Systems, 8(5), 1261-1280.
Díaz, H., Fonseca, R. B., & Soares, C.G. (2019). Site selection process for floating offshore
wind farms in Madeira Islands. Advances in Renewable Energies Offshore, 729-737.
Díaz, H., & Soares, C. G. (2020). An integrated GIS approach for site selection of floating
offshore wind farms in the Atlantic continental European coastline. Renewable and
Sustainable Energy Reviews, 134, 110328.
Diógenes, J. R. F., Rodrigues, J. C., Diógenes, M. C. F., & Claro, J. (2020). Overcoming
barriers to onshore wind farm implementation in Brazil. Energy Policy, 138, 111165.
Elia, A., Taylor, M., Gallachóir, B. Ó., & Rogan, F. (2020). Wind turbine cost reduction: A
detailed bottom-up analysis of innovation drivers. Energy Policy, 147, 111912.
Ember. (2022). Global Electricity Mid-Year Insights 2022. Malgorzata Wiatros-Motyka.
Emeksiz, C., & Demirci, B. (2019). The determination of offshore wind energy potential of
Turkey by using novelty hybrid site selection method. Sustainable Energy Technologies
and Assessments, 36, 100562.
Energy Sector Management Assistance Program. (2019). Going Global: Expanding Offshore
Wind to Emerging Markets. World Bank: Washington, DC.
Fetanat, A., & Khorasaninejad, E. (2015). A novel hybrid MCDM approach for offshore wind
farm site selection: A case study of Iran. Ocean & Coastal Management, 109, 17-28.
Frick, W. F., Baerwald, E. F., Pollock, J. F., Barclay, R. M., Szymanski, J. A., Weller, T. J.,
Russell A.L., Loeb S.C., Medellin R.A. & McGuire, L. P. (2017). Fatalities at wind
turbines may threaten population viability of a migratory bat. Biological Conservation,
209, 172-177.
Gerbens-Leenes, W., Hoekstra, A. Y., & van der Meer, T. H. (2008). The water footprint of
bioenergy and other primary energy carriers. (Value of water research report series 29;
No. 29). Delft: Unesco-IHE Institute for Water Education.
Gil-García, I. C., Ramos-Escudero, A., García-Cascales, M. S., Dagher, H., & Molina-García,
A. (2022). Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection:
Research of Key Factors of Offshore Wind Farm Site Selection
151
The Gulf of Maine case. Renewable Energy, 183, 130-147.
Gkeka-Serpetsidaki, P., & Tsoutsos, T. (2022). A methodological framework for optimal siting
of offshore wind farms: A case study on the island of Crete. Energy, 239, 122296.
Global Wind Energy Council. (2022a). Global Offshore Wind Report 2022. Brussels: Author.
Global Wind Energy Council. (2022b). Global Wind Report 2022. Brussels: Author.
Gustavson, M. (1979). Limits to Wind Power Utilization. Science, 204(4388): 13-17.
Haapala, K. R., & Prempreeda, P. (2014). Comparative life cycle assessment of 2.0 MW wind
turbines. International Journal of Sustainable Manufacturing, 3(2), 170-185.
International Energy Agency. (2021b). Global Energy Review 2021. Paris: Author.
International Energy Agency. (2022a). Global Energy Review: CO2 Emissions in 2021. Paris:
Author.
International Energy Agency. (2022b). World Energy Outlook 2022. Paris: Author.
Intergovernmental Panel on Climate Change. (2022). Climate Change 2022: Impacts,
adaptation and vulnerability: sixth assessment report. Geneva: World Meteorological
Organization (WMO) & United Nations Environment Programme (UNEP).
Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., & Mieno, H. (1993). The
max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy sets and
systems, 55(3), 241-253.
Katzner, T. E., Nelson, D. M., Braham, M. A., Doyle, J. M., Fernandez, N. B., Duerr, A. E.,
Bloom P. H., Fitzpatrick M. C., Miller T. A., Culver R. C. E., Braswell L., & DeWoody, J.
A. (2017). Golden Eagle fatalities and the continental‐scale consequences of local wind‐
energy generation. Conservation Biology, 31(2), 406-415.
Katzner, T. E., Nelson, D. M., Diffendorfer, J. E., Duerr, A. E., Campbell, C. J., Leslie, D., ...
& Miller, T. A. (2019). Wind energy: An ecological challenge. Science, 366(6470), 1206-
1207.
Kim, C. K., Jang, S., & Kim, T. Y. (2018). Site selection for offshore wind farms in the
southwest coast of South Korea. Renewable energy, 120, 151-162.
Kim, J. Y., Oh, K. Y., Kang, K. S., & Lee, J. S. (2013). Site selection of offshore wind farms
around the Korean Peninsula through economic evaluation. Renewable Energy, 54, 189-
195.
Kim, T., Park, J. I., & Maeng, J. (2016). Offshore wind farm site selection study around Jeju
Island, South Korea. Renewable Energy, 94, 619-628.
Lawrence Berkeley National Laboratory. (2021). Land-Based Wind Market Report: 2022
Edition. Washington, DC: U.S. Department of Energy.
Loughney, S., Wang, J., Bashir, M., Armin, M., & Yang, Y. (2021). Development and
application of a multiple-attribute decision-analysis methodology for site selection of
floating offshore wind farms on the UK Continental Shelf. Sustainable Energy
Technologies and Assessments, 47, 101440.
Lindeboom, H., Degraer, S., Dannheim, J., Gill, A. B., & Wilhelmsson, D. (2015). Offshore
wind park monitoring programmes, lessons learned and recommendations for the future.
Hydrobiologia, 756(1), 169-180.
Massachusetts Institute of Technology. (2010). Wind Power Fundamentals. Cambridge, MA:
Author.
Marques, A. T., Santos, C. D., Hanssen, F., Muñoz, A. R., Onrubia, A., Wikelski, M., Moreira
F., Palmeirim J. M., & Silva, J. P. (2020). Wind turbines cause functional habitat loss for
migratory soaring birds. Journal of Animal Ecology, 89(1), 93-103.
Möller, B. (2011). Continuous spatial modelling to analyse planning and economic
consequences of offshore wind energy. Energy Policy, 39(2), 511-517.
National Development Council. 2022. Taiwan’s Pathway to 2050 Net-Zero Emissions. Taipei:
Author.
New York State Energy Research and Development Authority. (2017). New York State Area for
Consideration for the Potential Locating of Offshore Wind Energy Areas. Albany, NY:
Author.
Policy Department for External Relations. (2018). Energy as a tool of foreign policy of
authoritarian states, in particular Russia. Strasbourg: Korteweg, R. Requested by the
European Parliament`s Committee on Foreign Affairs (AFET).
Research of Key Factors of Offshore Wind Farm Site Selection
153
Salvador, C. B., Arzaghi, E., Yazdi, M., Jahromi, H. A., & Abbassi, R. (2022). A multi-criteria
decision-making framework for site selection of offshore wind farms in Australia. Ocean
& Coastal Management, 224, 106196.
Shields, M., Beiter, P., Nunemaker, J., Cooperman, A., & Duffy, P. (2021). Impacts of turbine
and plant upsizing on the levelized cost of energy for offshore wind. Applied Energy, 298,
117189.
Siemens Gamesa. (2015). A clean energy solution – from cradle to grave. Zamudio: Author.
Sourianos, E., Kyriakou, K., & Hatiris, G. A. (2017). GIS-based spatial decision support system
for the optimum siting of offshore windfarms. European Water, 58, 337-343.
Taoufik, M., & Fekri, A. (2021). GIS-based multi-criteria analysis of offshore wind farm
development in Morocco. Energy Conversion and Management: X, 11, 100103.
U.S. Energy Information Administration. (2022). Electric Power Monthly with Data for August
2022. Washington, DC: Author.
Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications.
European Journal of operational research, 169(1), 1-29.
Varun, R. P., & Bhat, I. K. (2009). Energy, economics and environmental impacts of renewable
energy systems. Renewable and sustainable energy reviews, 13(9), 2716-2721.
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., ... & Wiser, R. (2019).
Grand challenges in the science of wind energy. Science, 366(6464), eaau2027.
WindEurope. (2020). Wind energy and economic recovery in Europe: How wind energy will
put communities at the heart of the green recovery. Brussels: Author.
WindEurope. (2022). Wind energy in Europe: 2021 Statistics and the outlook for 2022-2026.
Brussels: Author.
Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E., & Smith, A. (2016). Expert
elicitation survey on future wind energy costs. Nature Energy, 1(10), 1-8.
Wuebbles, D. J., & Jain, A. K. (2001). Concerns about climate change and the role of fossil
fuel use. Fuel Processing Technology, 71(1-3), 99-119.
Wu, Y., Zhang, J., Yuan, J., Geng, S., & Zhang, H. (2016). Study of decision framework of
offshore wind power station site selection based on ELECTRE-III under intuitionistic
fuzzy environment: A case of China. Energy Conversion and Management, 113, 66-81.
Wu, Y., Tao, Y., Zhang, B., Wang, S., Xu, C., & Zhou, J. (2020). A decision framework of
offshore wind power station site selection using a PROMETHEE method under
intuitionistic fuzzy environment: A case in China. Ocean & Coastal Management, 184,
105016.
Xu, C.H. (1998). The Fuzzy Delphi Analytic Hierarchy Process. Journal of the Chinese Fuzzy
Systems Association, 4(1):59-72.
3 Online Sources
Bureau of Energy. (2019). Policy of Offshore Wind in Taiwan. Retrieved from
https://www.tresor.economie.gouv.fr/Articles/f27ed9b3-e7db-40bf-880c5f1351c0a826/files/f4318f81-7d7b-44cc-a462-193ca3840d20
Eurostat. (2021). Extra-EU imports of natural gas by partner, [PNG file]. Retrieved from
https://ec.europa.eu/eurostat/stat121istics-explained/index.php?title=File:ExtraEU_imports_of_natural_gas_by_partner,_2019_and_2020.png#filelinks
Eurostat. (2022). Extra-EU imports of natural gas by partner, [PNG file]. Retrieved from
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:ExtraEU_imports_of_natural_gas_by_partner.png
International Energy Agency. (2021a). Greenhouse Gas Emissions from Energy Data Explorer.
Paris: Author. Retrieved from https://www.iea.org/data-and-statistics/datatools/greenhouse-gas-emissions-from-energy-data-explorer
International Energy Agency. (2021c). The Role of Key Minerals in Clean Energy Transitions.
Paris: Author. Retrieved from https://www.iea.org/reports/the-role-of-key-minerals-inclean-energy-transitions. License: CC BY 4.0
International Energy Agency. (2022c). Wind Electricity. Paris: Author. Retrieved from
https://www.iea.org/reports/wind-electricity. License: CC BY 4.0
International Monetary Fund. (2022). Global price of Natural gas, EU [PNGASEUUSDM].
Retrieved from https://fred.stlouisfed.org/series/PNGASEUUSDM.
Research of Key Factors of Offshore Wind Farm Site Selection
155
Taipower. (2022). Historical Electricity Generation. Retrieved from
https://www.taipower.com.tw/en/page.aspx?mid=4488&cid=2794&cchk=9ca22cf6-
ec7f-484e-8268-a7cb3ff6d1ce
Taipower. (2022). Wind Power Generation. Retrieved from
https://www.taipower.com.tw/en/page.aspx?mid=4495&cid=2841&cchk=7439ed1d736a-4b20-a154-c68daac01614
U.S. Department of Justice. Office of Public Affairs. (2014). Utility company sentenced in
Wyoming for killing protected birds at wind projects. Retrieved from
https://www.justice.gov/opa/pr/utility-company-sentenced-wyoming-killing-protectedbirds-wind-projects-0
4 Newspaper Articles
Athens Bureau. (May 25, 2021). Florina court halts wind farm construction at Nymfaio. Greek
City Times. Retrieved from https://greekcitytimes.com/2021/05/25/florina-court-windfarm/
Shuli Huang. (April 5, 2022). Offshore Wind Power Ecological Priority Project Bats Listed (離
岸風電生態優先項目 蝙蝠入列 ). Liberty Times Net, Life. Retrieved from
https://news.ltn.com.tw/news/life/paper/1509914
5 Master’s Thesis
Lin, X.L. (2006). Key Success Factors and Potential of Wind-Turbine Industry Development
in Taiwan (Master’s thesis, Chung Yuan Christian University, Taoyuan, Taiwan).
6 Others
Bureau of Energy. (2015). Key Points for Offshore Wind Power Planning Site Application (離
岸風力發電規劃場址申請作業要點).,
Bureau of Energy. (2021). Research and Analysis of Marine Ecology-Research Report on
Operation of Demonstration Wind Farm During Operation (離岸風場海洋生態研析-
示範風場營運間海洋生態監測作業研究).
Environmental Protection Agency. (2007). Technical Specifications for Marine Ecological
Surveys (海洋生態評估技術規範).
行政院環境保護署 書函。(2022)。檢送本署環境影響評估審查委員會第 414 次會議紀
錄 1 份,請查照。環署綜字第 1111031966 號.
描述 碩士
國立政治大學
地政學系
110257012
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110257012
資料類型 thesis
dc.contributor.advisor 孫振義<br>簡連貴zh_TW
dc.contributor.advisor Sun, Chen-Yi<br>Chien, Lien-Kweien_US
dc.contributor.author (Authors) 李玟倩zh_TW
dc.contributor.author (Authors) Lee, Wen-Chienen_US
dc.creator (作者) 李玟倩zh_TW
dc.creator (作者) Lee, Wen-Chienen_US
dc.date (日期) 2023en_US
dc.date.accessioned 1-Sep-2023 15:15:17 (UTC+8)-
dc.date.available 1-Sep-2023 15:15:17 (UTC+8)-
dc.date.issued (上傳時間) 1-Sep-2023 15:15:17 (UTC+8)-
dc.identifier (Other Identifiers) G0110257012en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146992-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 110257012zh_TW
dc.description.abstract (摘要) 近年來,伴隨著極端氣候事件發生的可能性和嚴重程度增加,以及暴露在極端化石燃料波動下的危險性日益增長,能源轉型勢在必行。在所有可再生能源中,風能是實現能源轉型的主角,安全且具有韌性。本研究發現,文獻回顧中大多數國家已指定不允許風電場開發的排除區域。臺灣有類似的作法,可見於「離岸風力發電規劃場址申請作業要點」和「離岸風力發電區塊開發場址規劃申請作業要點」。
然而,關鍵因素的擬定在於幫助識別通過排除區域的最佳開發地點。離岸風電場選址的關鍵因素至關重要,其訂定將得以最小化環境和海洋生態影響,並最大化開發潛力。
本研究旨在建立離岸風電場選址關鍵因素的整體結構,以協助臺灣在公正轉型下實現台灣在能源部門之淨零排放目。爰此,本研回顧世界各國的文獻及研究,得到了68個選址子因素。在與三位專家諮詢後,這些子因素被整合為44個,並作為模糊德爾菲問卷的基礎。其次,刪除五個未達到專家共識閾值的子因素,將其餘39個合併為35個,分屬於九個主因素和四大類別,並以此為AHP問卷的基礎。本研究進而分析了AHP問卷的數據,以建立離岸風電場選址關鍵因素的整體結構。
zh_TW
dc.description.abstract (摘要) Due to the increase in the likelihood and severity of an extreme weather event and the increasing exposure to extreme fossil fuel volatility, it is necessary to carry out an energy transition. Among all renewable energy, wind energy is the protagonist of the secure and resilient energy transition. This research found that most countries reviewed have designated exclusion areas not allowed for wind farm development. Similar documents in Taiwan can be found at “Guidelines for Offshore Wind Power Generation Site Planning and Application Process” and “Guidelines for Offshore Wind Power Generation Zonal Development Site Planning and Application Process”.
However, the key factors are to help identify optimal development sites that pass the exclusion areas. It is crucial to identify the key factors involved in offshore wind farm siting to minimize environmental and marine ecological impacts and maximize development potential.
This research aims to establish the overall structure of these key factors to assist in achieving Taiwan’s Net-Zero Emissions goals through Just Transition in the energy sector. Therefore, this research conducted a comprehensive review of previous research and literature from around the world, resulting in 68 siting sub-factors. After consulting with three experts, the sub-factors were consolidated into 44 and used as the foundation of the FDM questionnaire. Five sub-factors that did not meet the expert consensus value threshold were then removed, and the remaining 39 sub-factors were merged into 35 sub-factors that fell under nine main factors and four categories, forming the basis of the AHP questionnaire. The study analyzed the data from the AHP questionnaires to establish the overall structure of the key factors of offshore wind farm site selection.
en_US
dc.description.tableofcontents List of Figures 10
List of Tables 12
Chapter I INTRODUCTION 15
1 Statement of the Problem 15
2 Research Objectives 17
3 Research Scope and Context 18
3.1 Scope and Limitation 18
3.2 Research context 20
4 Research Process and Methods 22
4.1 Research Process 22
4.2 Research Methods 24
Chapter II LITERATURE REVIEW 25
1 Global Warming and Energy Security 25
2 Wind Energy and Development 28
2.1 Introduction of wind generation 28
2.2 Benefits of wind energy 30
2.3 Wind Energy Development 32
2.4 Summary 37
3 Offshore Wind Energy Development 38
3.1 Global overview 38
3.2 Taiwan 41
3.3 Summary 46
4 Factors Considered in Offshore Wind Farm Site Selection 47
4.1 Taiwan 47
4.2 North America 54
4.3 Europe and North Africa 56
4.4 Asia 64
4.5 Australia 70
4.6 Summary 71
Chapter III RESEARCH DESIGN 77
1 Research Structure 77
2 Drafting of the Key Factors 79
2.1 Drafting of the Key Factors 79
2.2 Factors description 82
3 Expert Questionnaire Implementation Plan 92
3.1 Purpose of the questionnaire 92
3.2 Fuzzy Delphi Method questionnaire 92
3.3 Analytic Hierarchy Process questionnaire 95
3.4 Survey participants 98
Chapter IV DATA ANALYSIS AND RESULTS 99
1 Finalizing Content of Key Factors 99
1.1 FDM Questionnaire Distribution and Collection 99
1.2 Calculation of FDM Questionnaire 100
1.3 Data Analysis of FDM Questionnaire 106
1.4 Hierarchical Structure Adjustment 114
1.5 Summary 116
2 Priority of Key Factors 118
2.1 The Finalized Structure of the Key Factors 118
2.2 AHP Questionnaire Distribution and Collection 120
2.3 Weight Analysis of Each Level 122
2.4 Weight Analysis of Each Field of Experts 129
2.5 Summary 139
Chapter V CONCLUSIONS AND REC 143
1 Conclusions 143
2 Recommendations and Limitations 147
Reference 149
Appendix 1 Fuzzy Delphi Method Questionnaire 157
Appendix 2 Analytic Hierarchy Process Questionnaire 168
Appendix 3 AHP Questionnaire Consistency Test Results of Each Hierarchy
Structure 188
zh_TW
dc.format.extent 10511815 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110257012en_US
dc.subject (關鍵詞) 離岸風力發電zh_TW
dc.subject (關鍵詞) 選址zh_TW
dc.subject (關鍵詞) 關鍵因素zh_TW
dc.subject (關鍵詞) 模糊德爾非法zh_TW
dc.subject (關鍵詞) 層級分析法zh_TW
dc.subject (關鍵詞) Offshore wind farmen_US
dc.subject (關鍵詞) Site selectionen_US
dc.subject (關鍵詞) Key factorsen_US
dc.subject (關鍵詞) Fuzzy Delphi Methoden_US
dc.subject (關鍵詞) Analytical Hierarchy Processen_US
dc.title (題名) 離岸風電場選址關鍵因素研究zh_TW
dc.title (題名) Key Factors of Offshore Wind Farm Site Selectionen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1 Books
Liang, S.W and Wu, P.L. (2016). Research Methods. New Taipei: Gao-lih.
Zhang, S.X. (2012). Fuzzy Multi-Criteria Decision Making for Evaluation Method. Taipei:
Wunan.
2 Journal Articles
American Clean Power. (2022). Wind Power Facts. Washington, DC: Author.
Amponsah, N. Y., Troldborg, M., Kington, B., Aalders, I., & Hough, R. L. (2014). Greenhouse
gas emissions from renewable energy sources: A review of lifecycle considerations.
Renewable and Sustainable Energy Reviews, 39, 461-475.
Bennett, N. J., Blythe, J., White, C. S., & Campero, C. (2021). Blue growth and blue justice:
Ten risks and solutions for the ocean economy. Marine Policy, 125, 104387.
Bonou, A., Laurent, A., & Olsen, S. I. (2016). Life cycle assessment of onshore and offshore
wind energy-from theory to application. Applied Energy, 180, 327-337.
Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative research
journal, 9(2):27-40.
Bureau of Energy. (2020). Energy Transition White Paper (Approved Version). Taipei: Ministry
of Economic Affairs.
Caceoğlu, E., Yildiz, H. K., Oğuz, E., Huvaj, N., & Guerrero, J. M. (2022). Offshore wind
power plant site selection using Analytical Hierarchy Process for Northwest Turkey.
Ocean Engineering, 252, 111178.
Deveci, M., Cali, U., Kucuksari, S., & Erdogan, N. (2020). Interval type-2 fuzzy sets based
multi-criteria decision-making model for offshore wind farm development in Ireland.
Energy, 198, 117317.
Deveci M., Özcan E., & John R. (2020). Offshore Wind Farms: A Fuzzy Approach to Site
Selection in a Black Sea Region. 2020 IEEE Texas Power and Energy Conference (TPEC),
1-6. doi: 10.1109/TPEC48276.2020.9042530.
Deveci, M., Pamucar, D., Cali, U., Kantar, E., Kölle, K., & Tande, J. O. (2022). Hybrid q-Rung
Orthopair Fuzzy Sets Based CoCoSo Model for Floating Offshore Wind Farm Site
Selection in Norway. CSEE Journal of Power and Energy Systems, 8(5), 1261-1280.
Díaz, H., Fonseca, R. B., & Soares, C.G. (2019). Site selection process for floating offshore
wind farms in Madeira Islands. Advances in Renewable Energies Offshore, 729-737.
Díaz, H., & Soares, C. G. (2020). An integrated GIS approach for site selection of floating
offshore wind farms in the Atlantic continental European coastline. Renewable and
Sustainable Energy Reviews, 134, 110328.
Diógenes, J. R. F., Rodrigues, J. C., Diógenes, M. C. F., & Claro, J. (2020). Overcoming
barriers to onshore wind farm implementation in Brazil. Energy Policy, 138, 111165.
Elia, A., Taylor, M., Gallachóir, B. Ó., & Rogan, F. (2020). Wind turbine cost reduction: A
detailed bottom-up analysis of innovation drivers. Energy Policy, 147, 111912.
Ember. (2022). Global Electricity Mid-Year Insights 2022. Malgorzata Wiatros-Motyka.
Emeksiz, C., & Demirci, B. (2019). The determination of offshore wind energy potential of
Turkey by using novelty hybrid site selection method. Sustainable Energy Technologies
and Assessments, 36, 100562.
Energy Sector Management Assistance Program. (2019). Going Global: Expanding Offshore
Wind to Emerging Markets. World Bank: Washington, DC.
Fetanat, A., & Khorasaninejad, E. (2015). A novel hybrid MCDM approach for offshore wind
farm site selection: A case study of Iran. Ocean & Coastal Management, 109, 17-28.
Frick, W. F., Baerwald, E. F., Pollock, J. F., Barclay, R. M., Szymanski, J. A., Weller, T. J.,
Russell A.L., Loeb S.C., Medellin R.A. & McGuire, L. P. (2017). Fatalities at wind
turbines may threaten population viability of a migratory bat. Biological Conservation,
209, 172-177.
Gerbens-Leenes, W., Hoekstra, A. Y., & van der Meer, T. H. (2008). The water footprint of
bioenergy and other primary energy carriers. (Value of water research report series 29;
No. 29). Delft: Unesco-IHE Institute for Water Education.
Gil-García, I. C., Ramos-Escudero, A., García-Cascales, M. S., Dagher, H., & Molina-García,
A. (2022). Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection:
Research of Key Factors of Offshore Wind Farm Site Selection
151
The Gulf of Maine case. Renewable Energy, 183, 130-147.
Gkeka-Serpetsidaki, P., & Tsoutsos, T. (2022). A methodological framework for optimal siting
of offshore wind farms: A case study on the island of Crete. Energy, 239, 122296.
Global Wind Energy Council. (2022a). Global Offshore Wind Report 2022. Brussels: Author.
Global Wind Energy Council. (2022b). Global Wind Report 2022. Brussels: Author.
Gustavson, M. (1979). Limits to Wind Power Utilization. Science, 204(4388): 13-17.
Haapala, K. R., & Prempreeda, P. (2014). Comparative life cycle assessment of 2.0 MW wind
turbines. International Journal of Sustainable Manufacturing, 3(2), 170-185.
International Energy Agency. (2021b). Global Energy Review 2021. Paris: Author.
International Energy Agency. (2022a). Global Energy Review: CO2 Emissions in 2021. Paris:
Author.
International Energy Agency. (2022b). World Energy Outlook 2022. Paris: Author.
Intergovernmental Panel on Climate Change. (2022). Climate Change 2022: Impacts,
adaptation and vulnerability: sixth assessment report. Geneva: World Meteorological
Organization (WMO) & United Nations Environment Programme (UNEP).
Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., & Mieno, H. (1993). The
max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy sets and
systems, 55(3), 241-253.
Katzner, T. E., Nelson, D. M., Braham, M. A., Doyle, J. M., Fernandez, N. B., Duerr, A. E.,
Bloom P. H., Fitzpatrick M. C., Miller T. A., Culver R. C. E., Braswell L., & DeWoody, J.
A. (2017). Golden Eagle fatalities and the continental‐scale consequences of local wind‐
energy generation. Conservation Biology, 31(2), 406-415.
Katzner, T. E., Nelson, D. M., Diffendorfer, J. E., Duerr, A. E., Campbell, C. J., Leslie, D., ...
& Miller, T. A. (2019). Wind energy: An ecological challenge. Science, 366(6470), 1206-
1207.
Kim, C. K., Jang, S., & Kim, T. Y. (2018). Site selection for offshore wind farms in the
southwest coast of South Korea. Renewable energy, 120, 151-162.
Kim, J. Y., Oh, K. Y., Kang, K. S., & Lee, J. S. (2013). Site selection of offshore wind farms
around the Korean Peninsula through economic evaluation. Renewable Energy, 54, 189-
195.
Kim, T., Park, J. I., & Maeng, J. (2016). Offshore wind farm site selection study around Jeju
Island, South Korea. Renewable Energy, 94, 619-628.
Lawrence Berkeley National Laboratory. (2021). Land-Based Wind Market Report: 2022
Edition. Washington, DC: U.S. Department of Energy.
Loughney, S., Wang, J., Bashir, M., Armin, M., & Yang, Y. (2021). Development and
application of a multiple-attribute decision-analysis methodology for site selection of
floating offshore wind farms on the UK Continental Shelf. Sustainable Energy
Technologies and Assessments, 47, 101440.
Lindeboom, H., Degraer, S., Dannheim, J., Gill, A. B., & Wilhelmsson, D. (2015). Offshore
wind park monitoring programmes, lessons learned and recommendations for the future.
Hydrobiologia, 756(1), 169-180.
Massachusetts Institute of Technology. (2010). Wind Power Fundamentals. Cambridge, MA:
Author.
Marques, A. T., Santos, C. D., Hanssen, F., Muñoz, A. R., Onrubia, A., Wikelski, M., Moreira
F., Palmeirim J. M., & Silva, J. P. (2020). Wind turbines cause functional habitat loss for
migratory soaring birds. Journal of Animal Ecology, 89(1), 93-103.
Möller, B. (2011). Continuous spatial modelling to analyse planning and economic
consequences of offshore wind energy. Energy Policy, 39(2), 511-517.
National Development Council. 2022. Taiwan’s Pathway to 2050 Net-Zero Emissions. Taipei:
Author.
New York State Energy Research and Development Authority. (2017). New York State Area for
Consideration for the Potential Locating of Offshore Wind Energy Areas. Albany, NY:
Author.
Policy Department for External Relations. (2018). Energy as a tool of foreign policy of
authoritarian states, in particular Russia. Strasbourg: Korteweg, R. Requested by the
European Parliament`s Committee on Foreign Affairs (AFET).
Research of Key Factors of Offshore Wind Farm Site Selection
153
Salvador, C. B., Arzaghi, E., Yazdi, M., Jahromi, H. A., & Abbassi, R. (2022). A multi-criteria
decision-making framework for site selection of offshore wind farms in Australia. Ocean
& Coastal Management, 224, 106196.
Shields, M., Beiter, P., Nunemaker, J., Cooperman, A., & Duffy, P. (2021). Impacts of turbine
and plant upsizing on the levelized cost of energy for offshore wind. Applied Energy, 298,
117189.
Siemens Gamesa. (2015). A clean energy solution – from cradle to grave. Zamudio: Author.
Sourianos, E., Kyriakou, K., & Hatiris, G. A. (2017). GIS-based spatial decision support system
for the optimum siting of offshore windfarms. European Water, 58, 337-343.
Taoufik, M., & Fekri, A. (2021). GIS-based multi-criteria analysis of offshore wind farm
development in Morocco. Energy Conversion and Management: X, 11, 100103.
U.S. Energy Information Administration. (2022). Electric Power Monthly with Data for August
2022. Washington, DC: Author.
Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications.
European Journal of operational research, 169(1), 1-29.
Varun, R. P., & Bhat, I. K. (2009). Energy, economics and environmental impacts of renewable
energy systems. Renewable and sustainable energy reviews, 13(9), 2716-2721.
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., ... & Wiser, R. (2019).
Grand challenges in the science of wind energy. Science, 366(6464), eaau2027.
WindEurope. (2020). Wind energy and economic recovery in Europe: How wind energy will
put communities at the heart of the green recovery. Brussels: Author.
WindEurope. (2022). Wind energy in Europe: 2021 Statistics and the outlook for 2022-2026.
Brussels: Author.
Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E., & Smith, A. (2016). Expert
elicitation survey on future wind energy costs. Nature Energy, 1(10), 1-8.
Wuebbles, D. J., & Jain, A. K. (2001). Concerns about climate change and the role of fossil
fuel use. Fuel Processing Technology, 71(1-3), 99-119.
Wu, Y., Zhang, J., Yuan, J., Geng, S., & Zhang, H. (2016). Study of decision framework of
offshore wind power station site selection based on ELECTRE-III under intuitionistic
fuzzy environment: A case of China. Energy Conversion and Management, 113, 66-81.
Wu, Y., Tao, Y., Zhang, B., Wang, S., Xu, C., & Zhou, J. (2020). A decision framework of
offshore wind power station site selection using a PROMETHEE method under
intuitionistic fuzzy environment: A case in China. Ocean & Coastal Management, 184,
105016.
Xu, C.H. (1998). The Fuzzy Delphi Analytic Hierarchy Process. Journal of the Chinese Fuzzy
Systems Association, 4(1):59-72.
3 Online Sources
Bureau of Energy. (2019). Policy of Offshore Wind in Taiwan. Retrieved from
https://www.tresor.economie.gouv.fr/Articles/f27ed9b3-e7db-40bf-880c5f1351c0a826/files/f4318f81-7d7b-44cc-a462-193ca3840d20
Eurostat. (2021). Extra-EU imports of natural gas by partner, [PNG file]. Retrieved from
https://ec.europa.eu/eurostat/stat121istics-explained/index.php?title=File:ExtraEU_imports_of_natural_gas_by_partner,_2019_and_2020.png#filelinks
Eurostat. (2022). Extra-EU imports of natural gas by partner, [PNG file]. Retrieved from
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:ExtraEU_imports_of_natural_gas_by_partner.png
International Energy Agency. (2021a). Greenhouse Gas Emissions from Energy Data Explorer.
Paris: Author. Retrieved from https://www.iea.org/data-and-statistics/datatools/greenhouse-gas-emissions-from-energy-data-explorer
International Energy Agency. (2021c). The Role of Key Minerals in Clean Energy Transitions.
Paris: Author. Retrieved from https://www.iea.org/reports/the-role-of-key-minerals-inclean-energy-transitions. License: CC BY 4.0
International Energy Agency. (2022c). Wind Electricity. Paris: Author. Retrieved from
https://www.iea.org/reports/wind-electricity. License: CC BY 4.0
International Monetary Fund. (2022). Global price of Natural gas, EU [PNGASEUUSDM].
Retrieved from https://fred.stlouisfed.org/series/PNGASEUUSDM.
Research of Key Factors of Offshore Wind Farm Site Selection
155
Taipower. (2022). Historical Electricity Generation. Retrieved from
https://www.taipower.com.tw/en/page.aspx?mid=4488&cid=2794&cchk=9ca22cf6-
ec7f-484e-8268-a7cb3ff6d1ce
Taipower. (2022). Wind Power Generation. Retrieved from
https://www.taipower.com.tw/en/page.aspx?mid=4495&cid=2841&cchk=7439ed1d736a-4b20-a154-c68daac01614
U.S. Department of Justice. Office of Public Affairs. (2014). Utility company sentenced in
Wyoming for killing protected birds at wind projects. Retrieved from
https://www.justice.gov/opa/pr/utility-company-sentenced-wyoming-killing-protectedbirds-wind-projects-0
4 Newspaper Articles
Athens Bureau. (May 25, 2021). Florina court halts wind farm construction at Nymfaio. Greek
City Times. Retrieved from https://greekcitytimes.com/2021/05/25/florina-court-windfarm/
Shuli Huang. (April 5, 2022). Offshore Wind Power Ecological Priority Project Bats Listed (離
岸風電生態優先項目 蝙蝠入列 ). Liberty Times Net, Life. Retrieved from
https://news.ltn.com.tw/news/life/paper/1509914
5 Master’s Thesis
Lin, X.L. (2006). Key Success Factors and Potential of Wind-Turbine Industry Development
in Taiwan (Master’s thesis, Chung Yuan Christian University, Taoyuan, Taiwan).
6 Others
Bureau of Energy. (2015). Key Points for Offshore Wind Power Planning Site Application (離
岸風力發電規劃場址申請作業要點).,
Bureau of Energy. (2021). Research and Analysis of Marine Ecology-Research Report on
Operation of Demonstration Wind Farm During Operation (離岸風場海洋生態研析-
示範風場營運間海洋生態監測作業研究).
Environmental Protection Agency. (2007). Technical Specifications for Marine Ecological
Surveys (海洋生態評估技術規範).
行政院環境保護署 書函。(2022)。檢送本署環境影響評估審查委員會第 414 次會議紀
錄 1 份,請查照。環署綜字第 1111031966 號.
zh_TW