Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 評估聖嬰-南方振盪(ENSO) 對泰國南部季節性及非季節性作物產量的影響
Evaluating the Impacts of El Nino-Southern Oscillation (ENSO) on Seasonal and Non-Seasonal Crop Yields in Southern Thailand
作者 高妍儒
Komala, Yadarun
貢獻者 范噶色
Stephan Van Gasselt
高妍儒
Yadarun Komala
關鍵詞 ENSO(聖嬰-南方振盪現象)
氣候變異性
農業
作物產量
泰國南部
ENSO (El Niño–Southern Oscillation)
Climate Variability
Agriculture
Crop Yields
Southern Thailand
日期 2024
上傳時間 5-Aug-2024 13:29:59 (UTC+8)
摘要 這篇論文研究了在過去30年中,聖嬰-南方振盪現象(ENSO)相關的氣候變異性與泰國南部東、西海岸農業生產力之間的關係,重點關注榴蓮、山竹、椰子和油棕等主要作物。通過使用相關分析和穩健線性回歸模型等方法,本研究考察了ENSO階段和氣候波動如何影響該地區的作物產量。初步分析顯示,不同作物或海岸線之間的ENSO與產量波動關聯性不一致。觀察到氣候變數與作物產量之間存在弱至中度的相關性,特別是在二月和三月的關鍵生長期內與降雨量存在顯著的負相關關係。 回歸分析提供了關於不同作物如何對氣候變化和ENSO階段做出反應的重要見解,特別是在解釋作物產量異常變異性超過50%的模型中。在東海岸,榴槤產量異常在厄爾尼諾條件(較高MEI)下降約16.37%,而油棕產量對溫度增加表現出韌性,但與ENSO有顯著交互作用。在西海岸,榴槤產量在厄爾尼諾事件中下降約14.51%。研究結果強調了ENSO對東西海岸榴槤生產力的顯著負面影響,雲量在產量變異中的作用,以及厄爾尼諾和拉尼娜的不對稱影響。此外,本研究指出,與西海岸相比,ENSO對東海岸的影響更為顯著,通過氣候敏感性進行調解。本研究有助於理解區域氣候對農業的影響,並為南泰國的適應策略提供參考。
This thesis investigates the relationships between ENSO-related climate variability and agricultural productivity in the east and west coasts of Southern Thailand over a 30-year period, focusing on key crops: durian, mangosteen, coconut, and oil-palm. Using methodologies such as correlation analysis and robust linear regression models, the study examines how ENSO phases and climate fluctuations influence crop yields across the region. Initial analyses revealed inconsistent ENSO linkage with yield fluctuations across different crops or coastlines. Weak to moderate correlations with climate variables were observed, with significant negative relationships with rainfall during the critical growth periods of February and March. The regression analyses provided significant insights into how different crops respond to climatic changes and ENSO phases, particularly in models explaining more than 50% of the variability in crop yield anomalies. In the east coast, durian yield anomalies decreased by approximately 16.37% during El Niño conditions (higher MEI), while oil-palm yields showed resilience to temperature increases but significant interactions with ENSO. On the west coast, durian yields decreased by about 14.51% during El Niño events. The findings underscore the significant negative impact of ENSO on durian productivity across both coasts, the role of cloud coverage in yield variability, and the asymmetric effects of El Niño and La Niña. Moreover, the study highlights that ENSO impacts on the east coast are more prominent, mediated through climate sensitivity, compared to the west coast. This study contributes to understanding regional climate impacts on agriculture and informs adaptation strategies for Southern Thailand.
參考文獻 Reference Aidoo, O. F., Hao, M., Ding, F., Wang, D., Jiang, D., Ma, T., Qian, Y., Tettey, E., Yankey, N., Ninsin, K. D., & Borgemeister, C. (2022). The Impact of Climate Change on Potential Invasion Risk of Oryctes monoceros Worldwide. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.895906 Al-Amin, A. Q., & Alam, G. M. (2015). Impact of El-Niño on Agro-economics in Malaysia and the Surrounding Regions: An Analysis of the Events from 1997-98. Asian Journal of Earth Sciences, 9(1), 1–8. https://doi.org/10.3923/ajes.2016.1.8 Apiratikorn, S., Sdoodee, S., Lerslerwong, L., & Rongsawat, S. (2012). The impact of climatic variability on phenological change, yield and fruit quality of mangosteen in Phatthalung province, Southern Thailand. Agriculture and Natural Resources, 46(1), 1-9. Apiratikorn, S., Sdoodee, S., & Limsakul, A. (2014). Climate-related changes in tropical-fruit flowering phases in Songkhla province, southern Thailand. Research Journal of Applied Sciences, Engineering and Technology, 7(15), 3150–3158. https://doi.org/10.19026/rjaset.7.654 Benoit, K. (2011). Linear Regression Models with Logarithmic Transformations. https://kenbenoit.net/assets/courses/ME104/logmodels2.pdf Boonklong, O., Jaroenusutasinee, M., & Jaroenusutasinee, K. (2006). Climate change affecting mangosteen production in Thailand. In Proceedings of the 5th WSEAS International Conference on Environmental, Ecosystems and Development. Venice, Italy (pp. 20-22). Buasap, W. (2008). Handbook for Agricultural Extension Academics: Mangosteen (คู่มือนักวิชาการส่งเสริมการเกษตร: มังคุด). Bangkok: Bureau of Agricultural Commodities Promotion and Management, Department of Agriculture Extension. https://agkb.lib.ku.ac.th/doae/search_detail/result/282207 Buathong, K., Moonchai, S., Saenton, S., Supapakorn, T., & Rojsiraphisal, T. (2023). Predictive model for Northern Thailand rainfall using NIÑO indexes and sea surface height anomalies in the South China Sea. Journal of Marine Science and Engineering, 12(1), 35. https://doi.org/10.3390/jmse12010035 Cashin, P., Mohaddes, K., & Raissi, M. (2017). Fair weather or foul? The macroeconomic effects of El Niño. Journal of International Economics, 106, 37–54. https://doi.org/10.1016/j.jinteco.2017.01.010 Chantaraniyom, T. (2007). Oil palm. Oil Palm Research and Development Centre. Songkhla, Thailand: Faculty of Natural Resources, Prince of Songkla University. Chiarawipa, N. R., Thongna, N. K., & Sdoodee, N. S. (2021). Assessing impact of weather variability and changing climate on oil-palm yield in major growing regions of southern Thailand. Journal of Agrometeorology, 22(3), 274–284. https://doi.org/10.54386/jam.v22i3.189 Choueiry, G. (2022, October 25). Interpret log transformations in linear regression. https://quantifyinghealth.com/interpret-log-transformations-in-linear-regression/ Department of Agriculture. (n.d.). Durian Production in Southern Thailand (การผลิตทุเรียน ภาคใต้ตอนล่าง) . https://www.doa.go.th/oard8/wp-content/ uploads/2020/09/การผลิตทุเรียนภาคใต้ตอนล่างn.pdf Department of Agriculture Extension (DOAE). (2020). 3rd Fruit Development Strategy and Acton Plan (2022-2027). https://secreta.doae.go.th/?p=6588 De Silva, Y. K., Babel, M. S., Abatan, A. A., Khadka, D., & Shanmugasundaram, J. (2023). Evaluation of ENSO in CMIP5 and CMIP6 models and its significance in the rainfall in Northeast Thailand. Theoretical and Applied Climatology, 154(3–4), 881–906. https://doi.org/10.1007/s00704-023-04585-z Dhakal, S., Sedhain, G. K., & Dhakal, S. C. (2016). Climate change impact and adaptation practices in agriculture: a case study of Rautahat District, Nepal. Climate, 4(4), 63. https://doi.org/10.3390/cli4040063 Durian Harvests. (2021). Durian, The King of Fruits. https://www.durianharvests.com/durian/ Elbehri, A. (2015). Climate change and food systems: global assessments and implications for food security and trade. Food and Agriculture Organization of the United Nations (FAO). Endo, N., Matsumoto, J., & Lwin, T. (2009). Trends in Precipitation Extremes over Southeast Asia. SOLA, 5, 168–171. https://doi.org/10.2151/sola.2009-043 Feng, S., Hu, Q., & Qian, W. (2004). Quality control of daily meteorological data in China, 1951–2000: a new dataset. International Journal of Climatology, 24(7), 853–870. https://doi.org/10.1002/joc.1047 Fleiss, S., Hill, J. K., McClean, C., Lucey, J. M., & Reynolds, G. (2017). Potential impacts of climate change on oil palm cultivation. A science-for-policy paper by the SEnSOR Programme, 1-17. Food and Agriculture Organization of the United Nations (FAO). (2014). The State of Food Insecurity in the World 2014. Rome. Geo-Informatics and Space Technology Development Agency (GISDA). (2564, November 11). El Niño and La Niña phenomena that influence the global climate. https://www.gistda.or.th/news_view.php?n_id=3312&lang=TH Ghosh, B. C., Eyasmin, F., & Adeleye, B. N. (2023). Climate change and agriculture nexus in Bangladesh: Evidence from ARDL and ECM techniques. PLOS Climate, 2(7), e0000244. https://doi.org/10.1371/journal.pclm.0000244 Gomes, F. P., & Prado, C. H. (2007). Ecophysiology of coconut palm under water stress. Brazilian Journal of Plant Physiology, 19(4), 377–391. https://doi.org/10.1590/s1677-04202007000400008 Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., . . . Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11645–11650. https://doi.org/10.1073/pnas.1710465114 Havlík, P., Leclère, D., Valin, H., Herrero, M., Schmid, E., Soussana, J. F., ... & Obersteiner, M. (2015). Global climate change, food supply and livestock production systems: A bioeconomic analysis. Hensawang, S., Injan, S., Varnakovida, P., & Humphries, U. (2021). Predicting Rice Production in Central Thailand Using the WOFOST Model with ENSO Impact. Mathematical and Computational Applications, 26(4), 72. https://doi.org/10.3390/mca26040072 Iizumi, T., Luo, J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., Brown, M. E., & Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4712 Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)]. IPCC, Geneva, Switzerland, 151 pp. https://www.ipcc.ch/report/ar5/syr/ Jaroensutasinee, K., Jaroensutasinee, M., & Boonsanong, P. (2023). Climatic Factor Differences and Mangosteen Fruit Quality between On- and Off-Season Productions. Emerging Science Journal, 7(2), 578–588. https://doi.org/10.28991/esj-2023-07-02-020 Jayasekara, K. S., & Jayasekara, C. (1993). Efficiency of water use in coconut under different soil/plant management systems. In M. K. Nair, H. H. Khan, P. Gopalasundaran, & E. V. V. Bhaskara Rao (Eds.), Advances in Coconut Research and Development (p. 427). New Delhi: Oxford & IBH Publishing Co Pvt. Ltd. Jintrawet, A., & Buddhaboon, C. (2011). El Nino–Southern oscillation and rice production in Thailand during 1980–2002 period. In International conference on the role of agriculture and natural resources on global changes (ANGC2011), Chiang Mai. Johansson, M. A., Cummings, D. a. T., & Glass, G. E. (2009). Multiyear Climate Variability and Dengue—El Niño Southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Medicine, 6(11), e1000168. https://doi.org/10.1371/journal.pmed.1000168 Juneng, L., & Tangang, F. T. (2005). Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Climate Dynamics, 25, 337-350. https://doi.org/10.1007/s00382-005-0031-6 Kamil, N. N., & Omar, S. F. (2016). Climate variability and its impact on the palm oil industry. Oil Palm Industry Economic Journal, 16(1), 18-30. Khor, J. F., Ling, L., Yusop, Z., Tan, W. L., Ling, J. L., & Soo, E. Z. X. (2021). Impact of El Niño on oil palm yield in Malaysia. Agronomy, 11(11), 2189. https://doi.org/10.3390/agronomy11112189 Kirtphaiboon, S., Wongwises, P., Limsakul, A., Sooktawee, S., & Humphries, U. (2014). Rainfall Variability over Thailand Related to the El Nino-Southern Oscillation (ENSO). J Sustain Energy Environ, 5(2), 37-42. Kozai, N., Higuchi, H., Tongtao, S., & Ogata, T. (2014). Low night temperature inhibits fertilization in 'Monthong' durian (Durio zibethinus Murr.). Tropical Agriculture and Development, 58(3), 102-108. Land Development Department. (n.d.). Land Resources of Southern Thailand. http://osl101.ldd.go.th/soilgr_man/south/gen_south.htm Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S., Davis, K. F., & Konar, M. (2022). Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews. Earth & Environment, 3(12), 872–889. https://doi.org/10.1038/s43017-022-00368-8 L'Heureux, M. (2014, May 5). What is the El Niño–Southern Oscillation (ENSO) in a nutshell? [Blog post]. In The ENSO Blog. NOAA. https://www.climate.gov/news-features/blogs/enso/what-el-ni%C3%B1o%E2%80%93southern-oscillation-enso-nutshell Libretexts. (2022, April 23). 16.2: Log Transformations. Statistics LibreTexts. https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Introductory_Statistics_(Lane)/16%3A_Transformations/16.02%3A_Log_Transformations Limsakul, A., & Singhruck, P. (2016). Long-term trends and variability of total and extreme precipitation in Thailand. Atmospheric Research, 169, 301-317. https://doi.org/10.1016/j.atmosres.2015.10.015 Limsakul, A. (2019). Impacts of El Niño-Southern Oscillation (ENSO) on rice production in Thailand during 1961-2016. Environment and Natural Resources Journal, 17(4), 30-42. https://doi.org/10.32526/ennrj.17.4.2019.29 Matthews, R. B., Horie, T., Kropff, M. J., Bachelet, D., Centeno, H. G., Shin, J. C., ... & Lee, M. H. (1995). A regional evaluation of the effect of future climate change on rice production in Asia. Modeling the impact of climate change on rice production in Asia, 95-139. Mukherjee, A., Saha, S., Lellyett, S. C., & Huda, A. K. S. (2022). Impact of climate change and variability on food security in the Asia-Pacific region. Asia-Pacific Sustainable Development Journal, 29(1), 118-141. https://doi.org/10.18356/26178419-29-1-6 Murdiyarso, D. (2000). Adaptation to climatic variability and change: Asian perspectives on agriculture and food security. Environmental monitoring and assessment, 61, 123-131. NASA. (n.d.). What Is Climate Change? Retrieved from https://climate.nasa.gov/what-is-climate-change/ Naylor, R. L., Battisti, D. S., Vimont, D. J., Falcon, W. P., & Burke, M. B. (2007). Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 7752–7757. https://doi.org/10.1073/pnas.0701825104 NOAA Physical Sciences Laboratory. (n.d.). Multivariate ENSO Index Version 2 (MEI.v2). https://psl.noaa.gov/enso/mei/ Nuwarapaksha, T., Udumann, S., Dissanayaka, D., Dissanayake, D., & Atapattu, A. J. (2022). Coconut based multiple cropping systems: An analytical review in Sri Lankan coconut cultivations. Circular Agricultural Systems, 2(1), 1–7. https://doi.org/10.48130/cas-2022-0008 Oettli, P., Behera, S. K., & Yamagata, T. (2018). Climate based predictability of oil palm tree yield in Malaysia. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20298-0 Office of Agricultural Economics. (2023). Agricultural production of Southern Thailand. https://mis-app.oae.go.th/area/ภูมิภาคทางการ/ภาคใต้ Ounlert, P., & Sdoodee, S. (2015). The effects of climatic variability on mangosteen flowering date in southern and eastern of Thailand. Research Journal of Applied Sciences, Engineering and Technology, 11(6), 617–622. https://doi.org/10.19026/rjaset.11.2021 Petersen, M. A. (2009). Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches. The Review of Financial Studies, 22(1), 435–480. http://www.jstor.org/stable/40056916 Paterson, R., Sariah, M., & Lima, N. (2013). How will climate change affect oil palm fungal diseases? Crop Protection, 46, 113–120. https://doi.org/10.1016/j.cropro.2012.12.023 Paterson, R. R. M. (2023). Future Climate Effects on Yield and Mortality of Conventional versus Modified Oil Palm in SE Asia. Plants, 12(12), 2236. https://doi.org/10.3390/plants12122236 Pheakdey, D. V., Xuan, T. D., & Khanh, T. D. (2017). Influence of climate factors on rice yields in Cambodia. AIMS Geosciences, 3(4), 561–575. https://doi.org/10.3934/geosci.2017.4.561 Promchote, P., Pokharel, B., Deng, L., Wang, S. S., Yoon, J., & Kittipadakul, P. (2023). Boosting Thailand’s palm oil yield with advanced seasonal predictions. Environmental Research Letters, 18(7), 071004. https://doi.org/10.1088/1748-9326/ace06c Rajagopal, V., Bai, K. V., Kumar, S. N., & Niral, V. (2007). Genetic analysis of drought responsive physiological characters in coconut. Indian Journal of Horticulture, 64(2), 181-189. Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6(1). https://doi.org/10.1038/ncomms6989 Reda, A. G., & Tripathi, N. K. (2016). Rain Fed Rice Agriculture under Climate Variability in Southeast Asia: The Case of Thailand. Journal of Earth Science & Climatic Change, 6(8). https://doi.org/10.4172/2157-7617.1000297 Rejab, M., Teck, C. S., Zain, K. M., & Muhamad, M. (2008). Mangosteen. In C. Y. Kwok, T. S. Lian, & S. H. Jamaluddin (Eds.), Breeding Horticultural Crops (pp. 155-174). MARDI, Malaysia. Roberts, M. G., Dawe, D., Falcon, W. P., & Naylor, R. L. (2009). El Niño–Southern oscillation impacts on rice production in Luzon, the Philippines. Journal of Applied Meteorology and Climatology, 48(8), 1718–1724. https://doi.org/10.1175/2008jamc1628.1 Sazib, N., Mladenova, L. E., & Bolten, J. D. (2020). Assessing the impact of ENSO on agriculture over Africa using earth observation data. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.509914 Salaeh, N., Ditthakit, P., Pinthong, S., Hasan, M. A., Islam, S., Mohammadi, B., & Linh, N. T. T. (2022). Long-Short Term memory technique for monthly rainfall prediction in Thale SAP Songkhla River Basin, Thailand. Symmetry, 14(8), 1599. https://doi.org/10.3390/sym14081599 Sdoodee, S., Limsakul, A., & Paengkaew, W. (2014). Climate variability and change in Southern Thailand affecting rubber production. https://www.researchgate.net/publication/328007515 Solomon, J. J., Hegde, V., Babu, M., & Geetha, L. (2018). Phytoplasmal Diseases. The Coconut Palm (Cocos Nucifera L.)--Research and Development Perspectives. In K. S. N. Naik (Ed.), (Chapter 11, pp. 519–556). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-2754-4_11 Stuecker, M. F., Tigchelaar, M., & Kantar, M. B. (2018). Climate variability impacts on rice production in the Philippines. PloS One, 13(8), e0201426. https://doi.org/10.1371/journal.pone.0201426 Suwanabatr, B., & Mekhora, T. (2002). Stabilization of Upland Agriculture under El Nino-Induced Climate Risk: Impact Assessment and Mitigation Measures in Thailand. RePEc: Research Papers in Economics. https://doi.org/10.22004/ag.econ.32670 Thai Meteorological Department. (n.d.). Climate of Thailand. https://www.tmd.go.th/info/ภมอากาศของประเทศไทย The International Trade Administration (ITA). (2024, January 8). Thailand - Country Commercial Guide. U.S. Department of Commerce. https://www.trade.gov/country-commercial-guides/thailand-agriculture Tiamiyu, S. A., Eze, J. N., Yusuf, T. M., Maji, A. T., & Bakare, S. O. (2015). Rainfall Variability and its Effect on Yield of Rice in Nigeria. International Letters of Natural Sciences, 49, 63–68. https://doi.org/10.18052/www.scipress.com/ilns.49.63 Trivej, P., Stevens, B., & Phansri, W. (2017). THE ONSET AND WITHDRAWAL OF THE RAINY SEASON IN EASTERN THAILAND WITH REGARD TO THE FLOWERING OF MANGOSTEENS AND DURIANS. Acta Geobalcanica, 3(1), 7–16. https://doi.org/10.18509/agb.2017.01 United Nations. (n.d.). What Is Climate Change? https://www.un.org/en/climatechange/what-is-climate-change United Nations Framework Convention on Climate Change (UNFCCC). (2021). Sustainable land and water management, including integrated watershed management strategies, to ensure food security. FCC/SB/2021/3. Agenda Item 8 – Koronivia Joint Work on Agriculture. Unjan, R., Nissapa, A., & Chiarawipa, R. (2017). Climatic considerations which support the choice between natural rubber and oil palm in Nakhon Si Thammarat, southern Thailand. Kasetsart Journal of Social Sciences, 38(3), 273–281. https://doi.org/10.1016/j.kjss.2016.07.006 Wangkiat, P. (2018, December 09). Thai farmers feel the heat of climate debate. Earth Journalism Network. https://earthjournalism.net/stories/thai-farmers-feel-the-heat-of-climate-debate Warren, R., Price, J., Graham, E., Forstenhaeusler, N., & VanDerWal, J. (2018). The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science, 360(6390), 791–795. https://doi.org/10.1126/science.aar3646 Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., & Yasunari, T. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103(C7), 14451–14510. https://doi.org/10.1029/97jc02719 Wikarmpapraharn, C., & Kositsakulchai, E. (2010). Relationship between ENSO and rainfall in the Central Plain of Thailand. Agriculture and Natural Resources, 44(4), 744-755. Wongkhunkaew, P. (2020). EFFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHEASTERN THAILAND. International Journal of GEOMATE, 18(68). https://doi.org/10.21660/2020.68.9216 World Bank Group. (n.d.). Thailand - Climatology. Climate Knowledge Portal. https://climateknowledgeportal.worldbank.org/country/thailand/climate-data-historical World Health Organization (WHO). (2023, November 9). El Niño Southern Oscillation (ENSO). https://www.who.int/news-room/fact-sheets/detail/el-nino-southern-oscillation-(enso) Yan, X., Konopka, P., Ploeger, F., Tao, M., Müller, R., Santee, M. L., Bian, J., & Riese, M. (2018). El Niño Southern Oscillation influence on the Asian summer monsoon anticyclone. Atmospheric Chemistry and Physics, 18(11), 8079–8096. https://doi.org/10.5194/acp-18-8079-2018 Yokoyama, S. (2002). ENSO Impacts on Food Crop Production and the Role of CGPRT Crops in Asia and the Pacific. CGPRT Centre Monograph No. 43. https://doi.org/10.22004/ag.econ.298035 Yuangthong, A., & Chawallee, P. (2022). Economic structure of the South from the past to the present and the future after COVID-19. Bank of Thailand. https://www.bot.or.th/th/research-and-publications/articles-and-publications/articles/regional-articles/reg-article-2023-07.html Figure Reference Coconut Plants [Photograph]. (n.d.). OkNation. https://media.oknation.net/uploads/201707/01/14563e1a3.jpg Coconut Flower [Photograph]. (2015). Cocofina Coconut. https://cocofinacoconut.wordpress.com/2015/07/15/what-is-a-coconut-flower/ Coconut Fruits [Photograph]. (2019). MGR Online. https://mgronline.com/south/detail/9620000111427 Durian Plant [Photograph]. (n.d.). Teedin108. https://www.teedin108.com/public/photo/original/20230923142716_245806650e9354b845c.jpg Durian Flowers [Photograph]. (n.d.). BCG: NSTDA. https://www.bcg.in.th/wp-content/uploads/2023/03/Ranong-governor-promote-production-durian-04.jpg Durian Fruits and Plant [Photograph]. (n.d.). Prachachat. https://www.prachachat.net/wp-content/uploads/2023/08/%E0%B8%AA%E0%B8%A7%E0%B8%99%E0%B8%97%E0%B8%B8%E0%B9%80%E0%B8%A3%E0%B8%B5%E0%B8%A2%E0%B8%99.jpg Durian Fruits [Photograph]. (n.d.). Infoquest. https://www.infoquest.co.th/wp-content/uploads/2023/12/0E2C8DB5EABF538F01754189F0BDA1BE.jpg Mangosteen Plants [Photograph]. (n.d.). Miw Food. https://www.miwfood.com/wp-content/uploads/2023/03/2-1.png Mangosteen Flowers [Photograph]. (n.d.). MeeHayThai. https://r.lnwfile.com/_/r/_raw/30/di/la.jpg Mangosteen Fruits [Photograph]. (n.d.). AgriNewsThai. https://files.agrinewsthai.com/2023/08/%E0%B8%A1%E0%B8%B1%E0%B8%872-2.jpg NOAA Physical Sciences Laboratory. (n.d.). Fig. 1…determine the wintertime Multivariate ENSO Index (MEI) during (a) El Niño and (b) La Niña events [Diagram displaying how the interactions of ENSO Variables]. https://psl.noaa.gov/enso/mei/ NOAA Physical Sciences Laboratory. (n.d.). Multivariate ENSO Index Version 2 (MEI.v2) [Timeseries diagram of MEI Version 2]. https://psl.noaa.gov/enso/mei/ Oil-Palm Fruits [Photograph]. (n.d.). Prachachat. https://www.prachachat.net/wp-content/uploads/2020/01/18-4-4.jpg Palm Plants [Photograph]. (n.d.). Alibio Thailand. https://www.allbiothailand.com/wp-content/uploads/2020/06/656-scaled.jpg Palm Flower [Photograph]. (2017). Dependence Bee Farm Facebook Page. https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTyGZuWp48fI2RFBBOSdW--86DSYR-BBYst6B-AnVYp-kU4Vt63JpvyUlcvIqyJAse5igA&usqp=CAU   Dataset Reference The Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Fertilizers consumption. [Data set]. Retrieved April 6, 2024, from https://www.fao.org/faostat/en/#country/216 NOAA Physical Sciences Laboratory. Multivariate ENSO Index Version 2 (MEI.v2). [Data set]. Retrieved February 19, 2024, from https://psl.noaa.gov/enso/mei/ Office of Agricultural Economics (OAE). Agricultural Data – Output, Farmign Area, and Prices. [Data set]. Agricultural Data Service Center. Thai Meteorological Department. Meteorological Data [Data set]. Retrieved December 4, 2023, from https://data-service.tmd.go.th/
描述 碩士
國立政治大學
應用經濟與社會發展英語碩士學位學程(IMES)
111266021
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0111266021
資料類型 thesis
dc.contributor.advisor 范噶色zh_TW
dc.contributor.advisor Stephan Van Gasselten_US
dc.contributor.author (Authors) 高妍儒zh_TW
dc.contributor.author (Authors) Yadarun Komalaen_US
dc.creator (作者) 高妍儒zh_TW
dc.creator (作者) Komala, Yadarunen_US
dc.date (日期) 2024en_US
dc.date.accessioned 5-Aug-2024 13:29:59 (UTC+8)-
dc.date.available 5-Aug-2024 13:29:59 (UTC+8)-
dc.date.issued (上傳時間) 5-Aug-2024 13:29:59 (UTC+8)-
dc.identifier (Other Identifiers) G0111266021en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/152679-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用經濟與社會發展英語碩士學位學程(IMES)zh_TW
dc.description (描述) 111266021zh_TW
dc.description.abstract (摘要) 這篇論文研究了在過去30年中,聖嬰-南方振盪現象(ENSO)相關的氣候變異性與泰國南部東、西海岸農業生產力之間的關係,重點關注榴蓮、山竹、椰子和油棕等主要作物。通過使用相關分析和穩健線性回歸模型等方法,本研究考察了ENSO階段和氣候波動如何影響該地區的作物產量。初步分析顯示,不同作物或海岸線之間的ENSO與產量波動關聯性不一致。觀察到氣候變數與作物產量之間存在弱至中度的相關性,特別是在二月和三月的關鍵生長期內與降雨量存在顯著的負相關關係。 回歸分析提供了關於不同作物如何對氣候變化和ENSO階段做出反應的重要見解,特別是在解釋作物產量異常變異性超過50%的模型中。在東海岸,榴槤產量異常在厄爾尼諾條件(較高MEI)下降約16.37%,而油棕產量對溫度增加表現出韌性,但與ENSO有顯著交互作用。在西海岸,榴槤產量在厄爾尼諾事件中下降約14.51%。研究結果強調了ENSO對東西海岸榴槤生產力的顯著負面影響,雲量在產量變異中的作用,以及厄爾尼諾和拉尼娜的不對稱影響。此外,本研究指出,與西海岸相比,ENSO對東海岸的影響更為顯著,通過氣候敏感性進行調解。本研究有助於理解區域氣候對農業的影響,並為南泰國的適應策略提供參考。zh_TW
dc.description.abstract (摘要) This thesis investigates the relationships between ENSO-related climate variability and agricultural productivity in the east and west coasts of Southern Thailand over a 30-year period, focusing on key crops: durian, mangosteen, coconut, and oil-palm. Using methodologies such as correlation analysis and robust linear regression models, the study examines how ENSO phases and climate fluctuations influence crop yields across the region. Initial analyses revealed inconsistent ENSO linkage with yield fluctuations across different crops or coastlines. Weak to moderate correlations with climate variables were observed, with significant negative relationships with rainfall during the critical growth periods of February and March. The regression analyses provided significant insights into how different crops respond to climatic changes and ENSO phases, particularly in models explaining more than 50% of the variability in crop yield anomalies. In the east coast, durian yield anomalies decreased by approximately 16.37% during El Niño conditions (higher MEI), while oil-palm yields showed resilience to temperature increases but significant interactions with ENSO. On the west coast, durian yields decreased by about 14.51% during El Niño events. The findings underscore the significant negative impact of ENSO on durian productivity across both coasts, the role of cloud coverage in yield variability, and the asymmetric effects of El Niño and La Niña. Moreover, the study highlights that ENSO impacts on the east coast are more prominent, mediated through climate sensitivity, compared to the west coast. This study contributes to understanding regional climate impacts on agriculture and informs adaptation strategies for Southern Thailand.en_US
dc.description.tableofcontents 1. Introduction (Page 1) 2. Background (Page 4) 3. Literature Review – Methodological Approaches (Page 14) 4. Methodology (Page 21) 5. Results (Page 34) 6. Discussion (Page 67) 7. Conclusion (Page 82) Reference (Page 84)zh_TW
dc.format.extent 15285371 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0111266021en_US
dc.subject (關鍵詞) ENSO(聖嬰-南方振盪現象)zh_TW
dc.subject (關鍵詞) 氣候變異性zh_TW
dc.subject (關鍵詞) 農業zh_TW
dc.subject (關鍵詞) 作物產量zh_TW
dc.subject (關鍵詞) 泰國南部zh_TW
dc.subject (關鍵詞) ENSO (El Niño–Southern Oscillation)en_US
dc.subject (關鍵詞) Climate Variabilityen_US
dc.subject (關鍵詞) Agricultureen_US
dc.subject (關鍵詞) Crop Yieldsen_US
dc.subject (關鍵詞) Southern Thailanden_US
dc.title (題名) 評估聖嬰-南方振盪(ENSO) 對泰國南部季節性及非季節性作物產量的影響zh_TW
dc.title (題名) Evaluating the Impacts of El Nino-Southern Oscillation (ENSO) on Seasonal and Non-Seasonal Crop Yields in Southern Thailanden_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Reference Aidoo, O. F., Hao, M., Ding, F., Wang, D., Jiang, D., Ma, T., Qian, Y., Tettey, E., Yankey, N., Ninsin, K. D., & Borgemeister, C. (2022). The Impact of Climate Change on Potential Invasion Risk of Oryctes monoceros Worldwide. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.895906 Al-Amin, A. Q., & Alam, G. M. (2015). Impact of El-Niño on Agro-economics in Malaysia and the Surrounding Regions: An Analysis of the Events from 1997-98. Asian Journal of Earth Sciences, 9(1), 1–8. https://doi.org/10.3923/ajes.2016.1.8 Apiratikorn, S., Sdoodee, S., Lerslerwong, L., & Rongsawat, S. (2012). The impact of climatic variability on phenological change, yield and fruit quality of mangosteen in Phatthalung province, Southern Thailand. Agriculture and Natural Resources, 46(1), 1-9. Apiratikorn, S., Sdoodee, S., & Limsakul, A. (2014). Climate-related changes in tropical-fruit flowering phases in Songkhla province, southern Thailand. Research Journal of Applied Sciences, Engineering and Technology, 7(15), 3150–3158. https://doi.org/10.19026/rjaset.7.654 Benoit, K. (2011). Linear Regression Models with Logarithmic Transformations. https://kenbenoit.net/assets/courses/ME104/logmodels2.pdf Boonklong, O., Jaroenusutasinee, M., & Jaroenusutasinee, K. (2006). Climate change affecting mangosteen production in Thailand. In Proceedings of the 5th WSEAS International Conference on Environmental, Ecosystems and Development. Venice, Italy (pp. 20-22). Buasap, W. (2008). Handbook for Agricultural Extension Academics: Mangosteen (คู่มือนักวิชาการส่งเสริมการเกษตร: มังคุด). Bangkok: Bureau of Agricultural Commodities Promotion and Management, Department of Agriculture Extension. https://agkb.lib.ku.ac.th/doae/search_detail/result/282207 Buathong, K., Moonchai, S., Saenton, S., Supapakorn, T., & Rojsiraphisal, T. (2023). Predictive model for Northern Thailand rainfall using NIÑO indexes and sea surface height anomalies in the South China Sea. Journal of Marine Science and Engineering, 12(1), 35. https://doi.org/10.3390/jmse12010035 Cashin, P., Mohaddes, K., & Raissi, M. (2017). Fair weather or foul? The macroeconomic effects of El Niño. Journal of International Economics, 106, 37–54. https://doi.org/10.1016/j.jinteco.2017.01.010 Chantaraniyom, T. (2007). Oil palm. Oil Palm Research and Development Centre. Songkhla, Thailand: Faculty of Natural Resources, Prince of Songkla University. Chiarawipa, N. R., Thongna, N. K., & Sdoodee, N. S. (2021). Assessing impact of weather variability and changing climate on oil-palm yield in major growing regions of southern Thailand. Journal of Agrometeorology, 22(3), 274–284. https://doi.org/10.54386/jam.v22i3.189 Choueiry, G. (2022, October 25). Interpret log transformations in linear regression. https://quantifyinghealth.com/interpret-log-transformations-in-linear-regression/ Department of Agriculture. (n.d.). Durian Production in Southern Thailand (การผลิตทุเรียน ภาคใต้ตอนล่าง) . https://www.doa.go.th/oard8/wp-content/ uploads/2020/09/การผลิตทุเรียนภาคใต้ตอนล่างn.pdf Department of Agriculture Extension (DOAE). (2020). 3rd Fruit Development Strategy and Acton Plan (2022-2027). https://secreta.doae.go.th/?p=6588 De Silva, Y. K., Babel, M. S., Abatan, A. A., Khadka, D., & Shanmugasundaram, J. (2023). Evaluation of ENSO in CMIP5 and CMIP6 models and its significance in the rainfall in Northeast Thailand. Theoretical and Applied Climatology, 154(3–4), 881–906. https://doi.org/10.1007/s00704-023-04585-z Dhakal, S., Sedhain, G. K., & Dhakal, S. C. (2016). Climate change impact and adaptation practices in agriculture: a case study of Rautahat District, Nepal. Climate, 4(4), 63. https://doi.org/10.3390/cli4040063 Durian Harvests. (2021). Durian, The King of Fruits. https://www.durianharvests.com/durian/ Elbehri, A. (2015). Climate change and food systems: global assessments and implications for food security and trade. Food and Agriculture Organization of the United Nations (FAO). Endo, N., Matsumoto, J., & Lwin, T. (2009). Trends in Precipitation Extremes over Southeast Asia. SOLA, 5, 168–171. https://doi.org/10.2151/sola.2009-043 Feng, S., Hu, Q., & Qian, W. (2004). Quality control of daily meteorological data in China, 1951–2000: a new dataset. International Journal of Climatology, 24(7), 853–870. https://doi.org/10.1002/joc.1047 Fleiss, S., Hill, J. K., McClean, C., Lucey, J. M., & Reynolds, G. (2017). Potential impacts of climate change on oil palm cultivation. A science-for-policy paper by the SEnSOR Programme, 1-17. Food and Agriculture Organization of the United Nations (FAO). (2014). The State of Food Insecurity in the World 2014. Rome. Geo-Informatics and Space Technology Development Agency (GISDA). (2564, November 11). El Niño and La Niña phenomena that influence the global climate. https://www.gistda.or.th/news_view.php?n_id=3312&lang=TH Ghosh, B. C., Eyasmin, F., & Adeleye, B. N. (2023). Climate change and agriculture nexus in Bangladesh: Evidence from ARDL and ECM techniques. PLOS Climate, 2(7), e0000244. https://doi.org/10.1371/journal.pclm.0000244 Gomes, F. P., & Prado, C. H. (2007). Ecophysiology of coconut palm under water stress. Brazilian Journal of Plant Physiology, 19(4), 377–391. https://doi.org/10.1590/s1677-04202007000400008 Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., . . . Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11645–11650. https://doi.org/10.1073/pnas.1710465114 Havlík, P., Leclère, D., Valin, H., Herrero, M., Schmid, E., Soussana, J. F., ... & Obersteiner, M. (2015). Global climate change, food supply and livestock production systems: A bioeconomic analysis. Hensawang, S., Injan, S., Varnakovida, P., & Humphries, U. (2021). Predicting Rice Production in Central Thailand Using the WOFOST Model with ENSO Impact. Mathematical and Computational Applications, 26(4), 72. https://doi.org/10.3390/mca26040072 Iizumi, T., Luo, J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., Brown, M. E., & Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4712 Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)]. IPCC, Geneva, Switzerland, 151 pp. https://www.ipcc.ch/report/ar5/syr/ Jaroensutasinee, K., Jaroensutasinee, M., & Boonsanong, P. (2023). Climatic Factor Differences and Mangosteen Fruit Quality between On- and Off-Season Productions. Emerging Science Journal, 7(2), 578–588. https://doi.org/10.28991/esj-2023-07-02-020 Jayasekara, K. S., & Jayasekara, C. (1993). Efficiency of water use in coconut under different soil/plant management systems. In M. K. Nair, H. H. Khan, P. Gopalasundaran, & E. V. V. Bhaskara Rao (Eds.), Advances in Coconut Research and Development (p. 427). New Delhi: Oxford & IBH Publishing Co Pvt. Ltd. Jintrawet, A., & Buddhaboon, C. (2011). El Nino–Southern oscillation and rice production in Thailand during 1980–2002 period. In International conference on the role of agriculture and natural resources on global changes (ANGC2011), Chiang Mai. Johansson, M. A., Cummings, D. a. T., & Glass, G. E. (2009). Multiyear Climate Variability and Dengue—El Niño Southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Medicine, 6(11), e1000168. https://doi.org/10.1371/journal.pmed.1000168 Juneng, L., & Tangang, F. T. (2005). Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Climate Dynamics, 25, 337-350. https://doi.org/10.1007/s00382-005-0031-6 Kamil, N. N., & Omar, S. F. (2016). Climate variability and its impact on the palm oil industry. Oil Palm Industry Economic Journal, 16(1), 18-30. Khor, J. F., Ling, L., Yusop, Z., Tan, W. L., Ling, J. L., & Soo, E. Z. X. (2021). Impact of El Niño on oil palm yield in Malaysia. Agronomy, 11(11), 2189. https://doi.org/10.3390/agronomy11112189 Kirtphaiboon, S., Wongwises, P., Limsakul, A., Sooktawee, S., & Humphries, U. (2014). Rainfall Variability over Thailand Related to the El Nino-Southern Oscillation (ENSO). J Sustain Energy Environ, 5(2), 37-42. Kozai, N., Higuchi, H., Tongtao, S., & Ogata, T. (2014). Low night temperature inhibits fertilization in 'Monthong' durian (Durio zibethinus Murr.). Tropical Agriculture and Development, 58(3), 102-108. Land Development Department. (n.d.). Land Resources of Southern Thailand. http://osl101.ldd.go.th/soilgr_man/south/gen_south.htm Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S., Davis, K. F., & Konar, M. (2022). Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews. Earth & Environment, 3(12), 872–889. https://doi.org/10.1038/s43017-022-00368-8 L'Heureux, M. (2014, May 5). What is the El Niño–Southern Oscillation (ENSO) in a nutshell? [Blog post]. In The ENSO Blog. NOAA. https://www.climate.gov/news-features/blogs/enso/what-el-ni%C3%B1o%E2%80%93southern-oscillation-enso-nutshell Libretexts. (2022, April 23). 16.2: Log Transformations. Statistics LibreTexts. https://stats.libretexts.org/Bookshelves/Introductory_Statistics/Introductory_Statistics_(Lane)/16%3A_Transformations/16.02%3A_Log_Transformations Limsakul, A., & Singhruck, P. (2016). Long-term trends and variability of total and extreme precipitation in Thailand. Atmospheric Research, 169, 301-317. https://doi.org/10.1016/j.atmosres.2015.10.015 Limsakul, A. (2019). Impacts of El Niño-Southern Oscillation (ENSO) on rice production in Thailand during 1961-2016. Environment and Natural Resources Journal, 17(4), 30-42. https://doi.org/10.32526/ennrj.17.4.2019.29 Matthews, R. B., Horie, T., Kropff, M. J., Bachelet, D., Centeno, H. G., Shin, J. C., ... & Lee, M. H. (1995). A regional evaluation of the effect of future climate change on rice production in Asia. Modeling the impact of climate change on rice production in Asia, 95-139. Mukherjee, A., Saha, S., Lellyett, S. C., & Huda, A. K. S. (2022). Impact of climate change and variability on food security in the Asia-Pacific region. Asia-Pacific Sustainable Development Journal, 29(1), 118-141. https://doi.org/10.18356/26178419-29-1-6 Murdiyarso, D. (2000). Adaptation to climatic variability and change: Asian perspectives on agriculture and food security. Environmental monitoring and assessment, 61, 123-131. NASA. (n.d.). What Is Climate Change? Retrieved from https://climate.nasa.gov/what-is-climate-change/ Naylor, R. L., Battisti, D. S., Vimont, D. J., Falcon, W. P., & Burke, M. B. (2007). Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 7752–7757. https://doi.org/10.1073/pnas.0701825104 NOAA Physical Sciences Laboratory. (n.d.). Multivariate ENSO Index Version 2 (MEI.v2). https://psl.noaa.gov/enso/mei/ Nuwarapaksha, T., Udumann, S., Dissanayaka, D., Dissanayake, D., & Atapattu, A. J. (2022). Coconut based multiple cropping systems: An analytical review in Sri Lankan coconut cultivations. Circular Agricultural Systems, 2(1), 1–7. https://doi.org/10.48130/cas-2022-0008 Oettli, P., Behera, S. K., & Yamagata, T. (2018). Climate based predictability of oil palm tree yield in Malaysia. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20298-0 Office of Agricultural Economics. (2023). Agricultural production of Southern Thailand. https://mis-app.oae.go.th/area/ภูมิภาคทางการ/ภาคใต้ Ounlert, P., & Sdoodee, S. (2015). The effects of climatic variability on mangosteen flowering date in southern and eastern of Thailand. Research Journal of Applied Sciences, Engineering and Technology, 11(6), 617–622. https://doi.org/10.19026/rjaset.11.2021 Petersen, M. A. (2009). Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches. The Review of Financial Studies, 22(1), 435–480. http://www.jstor.org/stable/40056916 Paterson, R., Sariah, M., & Lima, N. (2013). How will climate change affect oil palm fungal diseases? Crop Protection, 46, 113–120. https://doi.org/10.1016/j.cropro.2012.12.023 Paterson, R. R. M. (2023). Future Climate Effects on Yield and Mortality of Conventional versus Modified Oil Palm in SE Asia. Plants, 12(12), 2236. https://doi.org/10.3390/plants12122236 Pheakdey, D. V., Xuan, T. D., & Khanh, T. D. (2017). Influence of climate factors on rice yields in Cambodia. AIMS Geosciences, 3(4), 561–575. https://doi.org/10.3934/geosci.2017.4.561 Promchote, P., Pokharel, B., Deng, L., Wang, S. S., Yoon, J., & Kittipadakul, P. (2023). Boosting Thailand’s palm oil yield with advanced seasonal predictions. Environmental Research Letters, 18(7), 071004. https://doi.org/10.1088/1748-9326/ace06c Rajagopal, V., Bai, K. V., Kumar, S. N., & Niral, V. (2007). Genetic analysis of drought responsive physiological characters in coconut. Indian Journal of Horticulture, 64(2), 181-189. Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6(1). https://doi.org/10.1038/ncomms6989 Reda, A. G., & Tripathi, N. K. (2016). Rain Fed Rice Agriculture under Climate Variability in Southeast Asia: The Case of Thailand. Journal of Earth Science & Climatic Change, 6(8). https://doi.org/10.4172/2157-7617.1000297 Rejab, M., Teck, C. S., Zain, K. M., & Muhamad, M. (2008). Mangosteen. In C. Y. Kwok, T. S. Lian, & S. H. Jamaluddin (Eds.), Breeding Horticultural Crops (pp. 155-174). MARDI, Malaysia. Roberts, M. G., Dawe, D., Falcon, W. P., & Naylor, R. L. (2009). El Niño–Southern oscillation impacts on rice production in Luzon, the Philippines. Journal of Applied Meteorology and Climatology, 48(8), 1718–1724. https://doi.org/10.1175/2008jamc1628.1 Sazib, N., Mladenova, L. E., & Bolten, J. D. (2020). Assessing the impact of ENSO on agriculture over Africa using earth observation data. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.509914 Salaeh, N., Ditthakit, P., Pinthong, S., Hasan, M. A., Islam, S., Mohammadi, B., & Linh, N. T. T. (2022). Long-Short Term memory technique for monthly rainfall prediction in Thale SAP Songkhla River Basin, Thailand. Symmetry, 14(8), 1599. https://doi.org/10.3390/sym14081599 Sdoodee, S., Limsakul, A., & Paengkaew, W. (2014). Climate variability and change in Southern Thailand affecting rubber production. https://www.researchgate.net/publication/328007515 Solomon, J. J., Hegde, V., Babu, M., & Geetha, L. (2018). Phytoplasmal Diseases. The Coconut Palm (Cocos Nucifera L.)--Research and Development Perspectives. In K. S. N. Naik (Ed.), (Chapter 11, pp. 519–556). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-2754-4_11 Stuecker, M. F., Tigchelaar, M., & Kantar, M. B. (2018). Climate variability impacts on rice production in the Philippines. PloS One, 13(8), e0201426. https://doi.org/10.1371/journal.pone.0201426 Suwanabatr, B., & Mekhora, T. (2002). Stabilization of Upland Agriculture under El Nino-Induced Climate Risk: Impact Assessment and Mitigation Measures in Thailand. RePEc: Research Papers in Economics. https://doi.org/10.22004/ag.econ.32670 Thai Meteorological Department. (n.d.). Climate of Thailand. https://www.tmd.go.th/info/ภมอากาศของประเทศไทย The International Trade Administration (ITA). (2024, January 8). Thailand - Country Commercial Guide. U.S. Department of Commerce. https://www.trade.gov/country-commercial-guides/thailand-agriculture Tiamiyu, S. A., Eze, J. N., Yusuf, T. M., Maji, A. T., & Bakare, S. O. (2015). Rainfall Variability and its Effect on Yield of Rice in Nigeria. International Letters of Natural Sciences, 49, 63–68. https://doi.org/10.18052/www.scipress.com/ilns.49.63 Trivej, P., Stevens, B., & Phansri, W. (2017). THE ONSET AND WITHDRAWAL OF THE RAINY SEASON IN EASTERN THAILAND WITH REGARD TO THE FLOWERING OF MANGOSTEENS AND DURIANS. Acta Geobalcanica, 3(1), 7–16. https://doi.org/10.18509/agb.2017.01 United Nations. (n.d.). What Is Climate Change? https://www.un.org/en/climatechange/what-is-climate-change United Nations Framework Convention on Climate Change (UNFCCC). (2021). Sustainable land and water management, including integrated watershed management strategies, to ensure food security. FCC/SB/2021/3. Agenda Item 8 – Koronivia Joint Work on Agriculture. Unjan, R., Nissapa, A., & Chiarawipa, R. (2017). Climatic considerations which support the choice between natural rubber and oil palm in Nakhon Si Thammarat, southern Thailand. Kasetsart Journal of Social Sciences, 38(3), 273–281. https://doi.org/10.1016/j.kjss.2016.07.006 Wangkiat, P. (2018, December 09). Thai farmers feel the heat of climate debate. Earth Journalism Network. https://earthjournalism.net/stories/thai-farmers-feel-the-heat-of-climate-debate Warren, R., Price, J., Graham, E., Forstenhaeusler, N., & VanDerWal, J. (2018). The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science, 360(6390), 791–795. https://doi.org/10.1126/science.aar3646 Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., & Yasunari, T. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103(C7), 14451–14510. https://doi.org/10.1029/97jc02719 Wikarmpapraharn, C., & Kositsakulchai, E. (2010). Relationship between ENSO and rainfall in the Central Plain of Thailand. Agriculture and Natural Resources, 44(4), 744-755. Wongkhunkaew, P. (2020). EFFECT OF CLIMATE VARIABILITY ON RICE PRODUCTION OF NORTHEASTERN THAILAND. International Journal of GEOMATE, 18(68). https://doi.org/10.21660/2020.68.9216 World Bank Group. (n.d.). Thailand - Climatology. Climate Knowledge Portal. https://climateknowledgeportal.worldbank.org/country/thailand/climate-data-historical World Health Organization (WHO). (2023, November 9). El Niño Southern Oscillation (ENSO). https://www.who.int/news-room/fact-sheets/detail/el-nino-southern-oscillation-(enso) Yan, X., Konopka, P., Ploeger, F., Tao, M., Müller, R., Santee, M. L., Bian, J., & Riese, M. (2018). El Niño Southern Oscillation influence on the Asian summer monsoon anticyclone. Atmospheric Chemistry and Physics, 18(11), 8079–8096. https://doi.org/10.5194/acp-18-8079-2018 Yokoyama, S. (2002). ENSO Impacts on Food Crop Production and the Role of CGPRT Crops in Asia and the Pacific. CGPRT Centre Monograph No. 43. https://doi.org/10.22004/ag.econ.298035 Yuangthong, A., & Chawallee, P. (2022). Economic structure of the South from the past to the present and the future after COVID-19. Bank of Thailand. https://www.bot.or.th/th/research-and-publications/articles-and-publications/articles/regional-articles/reg-article-2023-07.html Figure Reference Coconut Plants [Photograph]. (n.d.). OkNation. https://media.oknation.net/uploads/201707/01/14563e1a3.jpg Coconut Flower [Photograph]. (2015). Cocofina Coconut. https://cocofinacoconut.wordpress.com/2015/07/15/what-is-a-coconut-flower/ Coconut Fruits [Photograph]. (2019). MGR Online. https://mgronline.com/south/detail/9620000111427 Durian Plant [Photograph]. (n.d.). Teedin108. https://www.teedin108.com/public/photo/original/20230923142716_245806650e9354b845c.jpg Durian Flowers [Photograph]. (n.d.). BCG: NSTDA. https://www.bcg.in.th/wp-content/uploads/2023/03/Ranong-governor-promote-production-durian-04.jpg Durian Fruits and Plant [Photograph]. (n.d.). Prachachat. https://www.prachachat.net/wp-content/uploads/2023/08/%E0%B8%AA%E0%B8%A7%E0%B8%99%E0%B8%97%E0%B8%B8%E0%B9%80%E0%B8%A3%E0%B8%B5%E0%B8%A2%E0%B8%99.jpg Durian Fruits [Photograph]. (n.d.). Infoquest. https://www.infoquest.co.th/wp-content/uploads/2023/12/0E2C8DB5EABF538F01754189F0BDA1BE.jpg Mangosteen Plants [Photograph]. (n.d.). Miw Food. https://www.miwfood.com/wp-content/uploads/2023/03/2-1.png Mangosteen Flowers [Photograph]. (n.d.). MeeHayThai. https://r.lnwfile.com/_/r/_raw/30/di/la.jpg Mangosteen Fruits [Photograph]. (n.d.). AgriNewsThai. https://files.agrinewsthai.com/2023/08/%E0%B8%A1%E0%B8%B1%E0%B8%872-2.jpg NOAA Physical Sciences Laboratory. (n.d.). Fig. 1…determine the wintertime Multivariate ENSO Index (MEI) during (a) El Niño and (b) La Niña events [Diagram displaying how the interactions of ENSO Variables]. https://psl.noaa.gov/enso/mei/ NOAA Physical Sciences Laboratory. (n.d.). Multivariate ENSO Index Version 2 (MEI.v2) [Timeseries diagram of MEI Version 2]. https://psl.noaa.gov/enso/mei/ Oil-Palm Fruits [Photograph]. (n.d.). Prachachat. https://www.prachachat.net/wp-content/uploads/2020/01/18-4-4.jpg Palm Plants [Photograph]. (n.d.). Alibio Thailand. https://www.allbiothailand.com/wp-content/uploads/2020/06/656-scaled.jpg Palm Flower [Photograph]. (2017). Dependence Bee Farm Facebook Page. https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTyGZuWp48fI2RFBBOSdW--86DSYR-BBYst6B-AnVYp-kU4Vt63JpvyUlcvIqyJAse5igA&usqp=CAU   Dataset Reference The Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Fertilizers consumption. [Data set]. Retrieved April 6, 2024, from https://www.fao.org/faostat/en/#country/216 NOAA Physical Sciences Laboratory. Multivariate ENSO Index Version 2 (MEI.v2). [Data set]. Retrieved February 19, 2024, from https://psl.noaa.gov/enso/mei/ Office of Agricultural Economics (OAE). Agricultural Data – Output, Farmign Area, and Prices. [Data set]. Agricultural Data Service Center. Thai Meteorological Department. Meteorological Data [Data set]. Retrieved December 4, 2023, from https://data-service.tmd.go.th/zh_TW