Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 負碳經濟之制度設計及影響評估
Institution Design and Impact Assessment of Negative Carbon Economy
作者 簡子寧
Chien, Zih-Ning
貢獻者 蕭代基
Shaw, Dai-Gee
簡子寧
Chien, Zih-Ning
關鍵詞 淨負排放
碳定價
碳債
碳稅基金系統
碳移除義務
Net-negative Emissions
Carbon Pricing
Carbon Debt
Tax-Fund System
Carbon Removal Obligation (CRO)
日期 2024
上傳時間 4-Sep-2024 14:37:13 (UTC+8)
摘要 在溫室氣體排放密集的社會現況中,將氣候目標由淨零排放轉向淨負排放,可使本世紀應償還的碳債數量被納入各種制度及政策考量中,以更有效地控制全球平均溫升在《巴黎協定》所明文的範圍內。 本研究針對碳稅基金系統(tax-fund system)和碳移除義務(carbon removal obligation,CRO)兩種負碳經濟制度工具,探討其在全球範疇的碳定價和深度減碳政策下,跨期碳移除(carbon dioxide removal,CDR)量和溫室氣體淨排放路徑等環境面效果,以及總體經濟成長、消費者所得變化和個別產業發展之經濟影響評估。 實證結果顯示,即使碳稅的初始稅率較低,碳稅基金系統可透過跨期除碳基金的累積,與碳價負擔較高的CRO制度,在氣候目標的達成和淨排放量的控制上有相似的政策效果,而CRO制度的交易成本雖高,在完整且可信的政府監管機制下,亦可在10-20年內快速消除碳債,兩者的政策成本和效益各有不同,其政策意涵亦有差別;碳稅基金系統適合與傳統碳定價政策結合,可成為有效且永續的CDR融資工具,而CRO作為可確立未來移除量的制度工具,逐步引入市場後預期可刺激CDR的研發和供給,但此制度仍處於提案階段,尚需更多研究結果以驗證其政策效果。 此外,碳定價和深度減碳政策所引發的大量資本投入將在短期內促進全球經濟成長,然而,物價水準和個人可支配所得的變動皆因地區而異;對於排放密集產業而言,雖化石燃料和電力部門因受電力結構轉型的影響,使其實質產值低於基準情境,但其餘受深度減碳政策規範的陸上運輸、鋼鐵、化學、水泥工業之產值未顯現出負面影響。
In the current context of a society characterized by high greenhouse gas emissions, shifting climate targets from net-zero emissions to net-negative emissions allows the consideration of carbon debt repayment within various frameworks and policies. This approach aims to more effectively control the global average temperature rise within the limits explicitly outlined in the Paris Agreement. This study focuses on two negative-carbon economic instruments: the tax-fund system and the carbon removal obligation (CRO). It examines their environmental impacts, such as intertemporal carbon dioxide removal (CDR) quantities and net greenhouse gas emission trajectories under global carbon pricing and deep decarbonization policies. Additionally, it assesses the economic implications on overall economic growth, consumer income changes, and individual industry developments. Empirical results indicate that even with a relatively low initial carbon tax rate, the tax-fund system, through the accumulation of intertemporal CDR funds, achieves similar policy effects in meeting climate targets and controlling net emissions as the more burdensome CRO system. Although the CRO system incurs higher transaction costs, it can rapidly eliminate carbon debt within 10-20 years under a robust and credible government oversight mechanism. The two systems exhibit differing policy costs and benefits, leading to distinct policy implications. The tax-fund system, suitable for integration with traditional carbon pricing policies, emerges as an effective and sustainable financing tool for CDR. In contrast, the CRO, as a mechanism establishing future removal obligations, is expected to stimulate CDR research and supply as it gradually enters the market, though it remains in the proposal stage and requires further empirical validation. Moreover, the significant capital investments triggered by carbon pricing and deep decarbonization policies are likely to spur global economic growth in the near term. However, changes in price levels and disposable personal income vary by region. For emission-intensive industries, while the fossil fuel and electricity sectors, affected by power structure transitions, show lower real output compared to baseline scenarios, other industries regulated under deep decarbonization policies—such as land transportation, steel, chemicals, and cement—do not exhibit negative impacts on their output.
參考文獻 中文參考文獻 1. 王寶貫與蕭代基(主編)(2023)。淨零之路-臺灣的雙贏策略。臺北市:中央研究院環境變遷研究中心。 2. 中華經濟研究院(2011)。台灣溫室氣體減量進程與綠能產業發展政策之基礎研究(1/2)。國家科學委員會補助研究計畫。 3. 中華經濟研究院、台灣經濟研究院(2012)。台灣溫室氣體減量進程與綠能產業發展政策之基礎研究(2/2)。國家科學委員會補助研究計畫。 4. 陳筆、王麗文與莊惠婷(2023)。淨零之路-臺灣的雙贏策略之附錄「溫室氣體減量邊際成本曲線」。臺北市:中央研究院環境變遷研究中心。 5. 傅俞瑄(2019)。東亞深度減碳政策對所得分配之影響。碩士論文,國立政治大學。 6. 蕭代基、黃琝琇、林師模與傅俞瑄(2022)。國際碳邊境調整機制對臺灣減碳與經濟的影響。臺灣能源期刊,9(1): 1-24。 英文參考文獻 1. Aatola, P., Ollikainen, M., & Toppinen, A. (2013). Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals. Energy Economics, 36, 380-395. 2. Barnett, H. J., & Morse, C. (2013). Scarcity and growth: The economics of natural resource availability. RFF Press. 3. Bednar, J., Obersteiner, M., & Wagner, F. (2019). On the financial viability of negative emissions. Nature communications, 10(1), 1783. 4. Bednar, J., Obersteiner, M., Baklanov, A., Thomson, M., Wagner, F., Geden, O., ... & Hall, J. W. (2021). Operationalizing the net-negative carbon economy. Nature, 596(7872), 377-383. 5. Bednar, J., Baklanov, A., & Macinante, J. (2023a). The Carbon Removal Obligation: Updated analytical model and scenario analysis. 6. Bednar, J., Macinante, J., Baklanov, A., Hall, J. W., Wagner, F., Ghaleigh, N. S., & Obersteiner, M. (2023b). Beyond emissions trading to a negative carbon economy: a proposed carbon removal obligation and its implementation. Climate Policy, 24(4), 501-514. 7. Bednar, J., Höglund, R., Möllersten, K., Obersteiner, M. & Tamme, E. (2023c). The role of carbon dioxide removal in contributing to the long-term goal of the Paris Agreement. 8. Bassi, A. M., Pallaske, G., Bridle, R., & Bajaj, K. (2023). Emission Reduction via Fossil Fuel Subsidy Removal and Carbon Pricing, Creating Synergies with Revenue Recycling. World, 4(2), 225-240. 9. Coase, R. H. (1960). The problem of social cost. Journal of Law and Economics, 3, 1-44. 10. Cambridge Econometrics. (2022). E3ME model manual. Retrieved from https://www.e3me.com/ 11. Dasgupta, P. S., & Heal, G. M. (1979). Economic theory and exhaustible resources. Cambridge University Press. 12. Dietz, S., & Venmans, F. (2019). Cumulative carbon emissions and economic policy: in search of general principles. Journal of Environmental Economics and Management, 96, 108-129. 13. European Commission. (2007). Competitiveness effects of environmental tax reforms. Retrieved from https://cordis.europa.eu/project/id/501993/fr 14. European Commission, Directorate-General for Climate Action, Directorate-General for Energy, Directorate-General for Mobility and Transport, Zampara, M., Obersteiner, M., Evangelopoulou, S. (2016). EU reference scenario 2016 : energy, transport and GHG emissions : trends to 2050, Publications Office. https://data.europa.eu/doi/10.2833/001137 15. European Commission. (2018). A clean planet for all: A European long-term strategic vision for a prosperous, modern, competitive, and climate neutral economy. Retrieved from https://climatecooperation.cn/climate/a-clean-planet-for-all-a-european-long-term-strategic-vision-for-a-prosperous-modern-competitive-and-climate-neutral-economy/ 16. Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., ... & Minx, J. C. (2018). Negative emissions—Part 2: Costs, potentials and side effects. Environmental research letters, 13(6), 063002. 17. Golosov, M., Hassler, J., Krusell, P., & Tsyvinski, A. (2014). Optimal taxes on fossil fuel in general equilibrium. Econometrica, 82(1), 41-88. 18. Green, J. F. (2017). Don't link carbon markets. Nature, 543(7646), 484-486. 19. Hickey, C., Fankhauser, S., Smith, S. M., & Allen, M. (2023). A review of commercialisation mechanisms for carbon dioxide removal. Frontiers in Climate, 4, 1101525. 20. Hotelling, H. (1931). The economics of exhaustible resources. Journal of political Economy, 39(2), 137-175. 21. HM Treasury. (2022) The Green Book. Retrieved from https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-government/the-green-book-2020 22. IPCC. (2018). Global warming of 1.5 ºC. Retrieved from https://www.ipcc.ch/sr15/ 23. IPCC. (2021). Climate Change 2021: The Physical Science Basis. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ 24. International Carbon Action Partnership (ICAP). (2021). Emissions trading systems and net zero: Trading removals. 25. IPCC. (2022). AR6 climate change 2022: Mitigation of climate change. Retrieved from https://www.ipcc.ch/report/ar6/wg3/ 26. IPCC. (2023). AR6 synthesis report: Climate change 2023. Retrieved from https://www.ipcc.ch/report/ar6/syr/ 27. I4CE. (2024). Maximising benefits of carbon pricing through carbon revenue use. 28. Jenkins, S., Mitchell-Larson, E., Ives, M. C., Haszeldine, S., & Allen, M. (2021). Upstream decarbonization through a carbon takeback obligation: an affordable backstop climate policy. Joule, 5(11), 2777-2796. 29. Jenkins, S., Kuijper, M., Helferty, H., Girardin, C., & Allen, M. (2023). Extended producer responsibility for fossil fuels. Environmental Research Letters, 18(1), 011005. 30. Kato, S., Lee, S., He, Y., Yoshioka, T., Morotomi, T., & Chewpreecha, U. (2023). Impact of Carbon Neutrality on the Economy and Industry Assuming Japan’s Achievement of 2030 Power Mix Plan: A 2050 Perspective Based on the E3ME Macro-Econometric Model. Energies, 16(18), 6661. 31. McKinsey & Company. (2009). Pathways to a low-carbon economy: Version 2 of the global greenhouse gas abatement cost curve. 32. Mercure, J. F., Pollitt, H., Edwards, N. R., Holden, P. B., Chewpreecha, U., Salas, P., ... & Vinuales, J. E. (2018). Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy strategy reviews, 20, 195-208. 33. Mercure, J. F., Salas, P., Vercoulen, P., Semieniuk, G., Lam, A., Pollitt, H., ... & Viñuales, J. E. (2021). Reframing incentives for climate policy action. Nature Energy, 6(12), 1133-1143. 34. Nordhaus, W. D. (2010). Economic aspects of global warming in a post-Copenhagen environment. Proceedings of the National Academy of Sciences, 107(26), 11721-11726. 35. Oxera. (2022). Market design for negative emissions in the UK ETS. 36. Pigou, A. C. (1932). The economics of welfare 4th. Basingstoke: Palgrave Macmillan. 37. Royal Society. (2018). Greenhouse gas removal. Retrieved from https://royalsociety.org/news-resources/projects/greenhouse-gas-removal/ 38. Rafaty, R., Dolphin, G., & Pretis, F. (2020). Carbon pricing and the elasticity of CO2 emissions. Nature Climate Change, 10, 581-586. 39. Rickels, W., Rothenstein, R., Schenuit, F., & Fridahl, M. (2022). Procure, bank, release: carbon removal certificate reserves to manage carbon prices on the path to net-zero. Energy Research & Social Science, 94, 102858. 40. Stern, N. (2006). Stern Review: The economics of climate change. 41. Stark, C., Thompson, M., Andrew, T., Beasley, G., Bellamy, O., Budden, P., ... & Vause, E. (2019). Net Zero: The UK’s contribution to stopping global warming. 42. Shaw, D., & Fu, Y. H. (2020). Climate clubs with tax revenue recycling, tariffs, and transfers. Climate Change Economics, 11(04), 2040008. 43. Strefler, J., Kriegler, E., Bauer, N., Luderer, G., Pietzcker, R. C., Giannousakis, A., & Edenhofer, O. (2021). Alternative carbon price trajectories can avoid excessive carbon removal. Nature Communications, 12(1), 2264. 44. Semieniuk, G., Holden, P. B., Mercure, J. F., Salas, P., Pollitt, H., Jobson, K., ... & Viñuales, J. E. (2022). Stranded fossil-fuel assets translate to major losses for investors in advanced economies. Nature Climate Change, 12(6), 532-538. 45. Shaw, D., Fu, Y. H., & Chen, Y. Q. (2023). East Asia climate club: Pathway toward 2050 net-zero. Climate Change Economics, 14(04), 2340005. 46. Smith, S., Geden, O., Gidden, M., Lamb, W., Nemet, G., Minx, J., ... & Vaughan, N. (2024). The state of carbon dioxide removal. 47. Thompson, M., Stark, C., & Climate Change Committee. (2019). Net Zero–Technical Report. 48. Tarruella, M., Huber, R., Mack, G., El Benni, N., & Finger, R. (2023). Cost-effectiveness of farm-vs. regional-level climate change mitigation policies. Q Open, qoad022. 49. Vogt-Schilb, A., Meunier, G., & Hallegatte, S. (2018). When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment. Journal of Environmental Economics and Management, 88, 210-233. 50. World Bank (WB). (2023, April 20). What you need to know about abatement costs and decarbonisation. Retrieved from https://www.worldbank.org/en/news/feature/2023/04/20/what-you-need-to-know-about-abatement-costs-and-decarbonisation 51. World Bank. (2024). State and trends of carbon pricing 2024.
描述 碩士
國立政治大學
經濟學系
111258004
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0111258004
資料類型 thesis
dc.contributor.advisor 蕭代基zh_TW
dc.contributor.advisor Shaw, Dai-Geeen_US
dc.contributor.author (Authors) 簡子寧zh_TW
dc.contributor.author (Authors) Chien, Zih-Ningen_US
dc.creator (作者) 簡子寧zh_TW
dc.creator (作者) Chien, Zih-Ningen_US
dc.date (日期) 2024en_US
dc.date.accessioned 4-Sep-2024 14:37:13 (UTC+8)-
dc.date.available 4-Sep-2024 14:37:13 (UTC+8)-
dc.date.issued (上傳時間) 4-Sep-2024 14:37:13 (UTC+8)-
dc.identifier (Other Identifiers) G0111258004en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/153285-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 經濟學系zh_TW
dc.description (描述) 111258004zh_TW
dc.description.abstract (摘要) 在溫室氣體排放密集的社會現況中,將氣候目標由淨零排放轉向淨負排放,可使本世紀應償還的碳債數量被納入各種制度及政策考量中,以更有效地控制全球平均溫升在《巴黎協定》所明文的範圍內。 本研究針對碳稅基金系統(tax-fund system)和碳移除義務(carbon removal obligation,CRO)兩種負碳經濟制度工具,探討其在全球範疇的碳定價和深度減碳政策下,跨期碳移除(carbon dioxide removal,CDR)量和溫室氣體淨排放路徑等環境面效果,以及總體經濟成長、消費者所得變化和個別產業發展之經濟影響評估。 實證結果顯示,即使碳稅的初始稅率較低,碳稅基金系統可透過跨期除碳基金的累積,與碳價負擔較高的CRO制度,在氣候目標的達成和淨排放量的控制上有相似的政策效果,而CRO制度的交易成本雖高,在完整且可信的政府監管機制下,亦可在10-20年內快速消除碳債,兩者的政策成本和效益各有不同,其政策意涵亦有差別;碳稅基金系統適合與傳統碳定價政策結合,可成為有效且永續的CDR融資工具,而CRO作為可確立未來移除量的制度工具,逐步引入市場後預期可刺激CDR的研發和供給,但此制度仍處於提案階段,尚需更多研究結果以驗證其政策效果。 此外,碳定價和深度減碳政策所引發的大量資本投入將在短期內促進全球經濟成長,然而,物價水準和個人可支配所得的變動皆因地區而異;對於排放密集產業而言,雖化石燃料和電力部門因受電力結構轉型的影響,使其實質產值低於基準情境,但其餘受深度減碳政策規範的陸上運輸、鋼鐵、化學、水泥工業之產值未顯現出負面影響。zh_TW
dc.description.abstract (摘要) In the current context of a society characterized by high greenhouse gas emissions, shifting climate targets from net-zero emissions to net-negative emissions allows the consideration of carbon debt repayment within various frameworks and policies. This approach aims to more effectively control the global average temperature rise within the limits explicitly outlined in the Paris Agreement. This study focuses on two negative-carbon economic instruments: the tax-fund system and the carbon removal obligation (CRO). It examines their environmental impacts, such as intertemporal carbon dioxide removal (CDR) quantities and net greenhouse gas emission trajectories under global carbon pricing and deep decarbonization policies. Additionally, it assesses the economic implications on overall economic growth, consumer income changes, and individual industry developments. Empirical results indicate that even with a relatively low initial carbon tax rate, the tax-fund system, through the accumulation of intertemporal CDR funds, achieves similar policy effects in meeting climate targets and controlling net emissions as the more burdensome CRO system. Although the CRO system incurs higher transaction costs, it can rapidly eliminate carbon debt within 10-20 years under a robust and credible government oversight mechanism. The two systems exhibit differing policy costs and benefits, leading to distinct policy implications. The tax-fund system, suitable for integration with traditional carbon pricing policies, emerges as an effective and sustainable financing tool for CDR. In contrast, the CRO, as a mechanism establishing future removal obligations, is expected to stimulate CDR research and supply as it gradually enters the market, though it remains in the proposal stage and requires further empirical validation. Moreover, the significant capital investments triggered by carbon pricing and deep decarbonization policies are likely to spur global economic growth in the near term. However, changes in price levels and disposable personal income vary by region. For emission-intensive industries, while the fossil fuel and electricity sectors, affected by power structure transitions, show lower real output compared to baseline scenarios, other industries regulated under deep decarbonization policies—such as land transportation, steel, chemicals, and cement—do not exhibit negative impacts on their output.en_US
dc.description.tableofcontents 第一章 緒論 1 第一節 研究動機與目的 1 第二節 研究對象與範圍 5 第三節 研究方法 5 第四節 研究流程與架構 6 第二章 文獻回顧 8 第一節 現行碳定價政策 8 第二節 除碳政策工具 13 第三節 負碳技術之發展 18 第四節 E3ME模型之應用 22 第三章 理論基礎 24 第一節 Hotelling法則 24 第二節 邊際減量成本曲線 30 第四章 實證分析 34 第一節 情境設定 34 第二節 制度設計 42 第三節 總體經濟影響評估 48 第五章 結論與未來研究方向 54 第一節 結論 54 第二節 未來研究方向 56 參考文獻 57 附錄 64zh_TW
dc.format.extent 5768962 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0111258004en_US
dc.subject (關鍵詞) 淨負排放zh_TW
dc.subject (關鍵詞) 碳定價zh_TW
dc.subject (關鍵詞) 碳債zh_TW
dc.subject (關鍵詞) 碳稅基金系統zh_TW
dc.subject (關鍵詞) 碳移除義務zh_TW
dc.subject (關鍵詞) Net-negative Emissionsen_US
dc.subject (關鍵詞) Carbon Pricingen_US
dc.subject (關鍵詞) Carbon Debten_US
dc.subject (關鍵詞) Tax-Fund Systemen_US
dc.subject (關鍵詞) Carbon Removal Obligation (CRO)en_US
dc.title (題名) 負碳經濟之制度設計及影響評估zh_TW
dc.title (題名) Institution Design and Impact Assessment of Negative Carbon Economyen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 中文參考文獻 1. 王寶貫與蕭代基(主編)(2023)。淨零之路-臺灣的雙贏策略。臺北市:中央研究院環境變遷研究中心。 2. 中華經濟研究院(2011)。台灣溫室氣體減量進程與綠能產業發展政策之基礎研究(1/2)。國家科學委員會補助研究計畫。 3. 中華經濟研究院、台灣經濟研究院(2012)。台灣溫室氣體減量進程與綠能產業發展政策之基礎研究(2/2)。國家科學委員會補助研究計畫。 4. 陳筆、王麗文與莊惠婷(2023)。淨零之路-臺灣的雙贏策略之附錄「溫室氣體減量邊際成本曲線」。臺北市:中央研究院環境變遷研究中心。 5. 傅俞瑄(2019)。東亞深度減碳政策對所得分配之影響。碩士論文,國立政治大學。 6. 蕭代基、黃琝琇、林師模與傅俞瑄(2022)。國際碳邊境調整機制對臺灣減碳與經濟的影響。臺灣能源期刊,9(1): 1-24。 英文參考文獻 1. Aatola, P., Ollikainen, M., & Toppinen, A. (2013). Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals. Energy Economics, 36, 380-395. 2. Barnett, H. J., & Morse, C. (2013). Scarcity and growth: The economics of natural resource availability. RFF Press. 3. Bednar, J., Obersteiner, M., & Wagner, F. (2019). On the financial viability of negative emissions. Nature communications, 10(1), 1783. 4. Bednar, J., Obersteiner, M., Baklanov, A., Thomson, M., Wagner, F., Geden, O., ... & Hall, J. W. (2021). Operationalizing the net-negative carbon economy. Nature, 596(7872), 377-383. 5. Bednar, J., Baklanov, A., & Macinante, J. (2023a). The Carbon Removal Obligation: Updated analytical model and scenario analysis. 6. Bednar, J., Macinante, J., Baklanov, A., Hall, J. W., Wagner, F., Ghaleigh, N. S., & Obersteiner, M. (2023b). Beyond emissions trading to a negative carbon economy: a proposed carbon removal obligation and its implementation. Climate Policy, 24(4), 501-514. 7. Bednar, J., Höglund, R., Möllersten, K., Obersteiner, M. & Tamme, E. (2023c). The role of carbon dioxide removal in contributing to the long-term goal of the Paris Agreement. 8. Bassi, A. M., Pallaske, G., Bridle, R., & Bajaj, K. (2023). Emission Reduction via Fossil Fuel Subsidy Removal and Carbon Pricing, Creating Synergies with Revenue Recycling. World, 4(2), 225-240. 9. Coase, R. H. (1960). The problem of social cost. Journal of Law and Economics, 3, 1-44. 10. Cambridge Econometrics. (2022). E3ME model manual. Retrieved from https://www.e3me.com/ 11. Dasgupta, P. S., & Heal, G. M. (1979). Economic theory and exhaustible resources. Cambridge University Press. 12. Dietz, S., & Venmans, F. (2019). Cumulative carbon emissions and economic policy: in search of general principles. Journal of Environmental Economics and Management, 96, 108-129. 13. European Commission. (2007). Competitiveness effects of environmental tax reforms. Retrieved from https://cordis.europa.eu/project/id/501993/fr 14. European Commission, Directorate-General for Climate Action, Directorate-General for Energy, Directorate-General for Mobility and Transport, Zampara, M., Obersteiner, M., Evangelopoulou, S. (2016). EU reference scenario 2016 : energy, transport and GHG emissions : trends to 2050, Publications Office. https://data.europa.eu/doi/10.2833/001137 15. European Commission. (2018). A clean planet for all: A European long-term strategic vision for a prosperous, modern, competitive, and climate neutral economy. Retrieved from https://climatecooperation.cn/climate/a-clean-planet-for-all-a-european-long-term-strategic-vision-for-a-prosperous-modern-competitive-and-climate-neutral-economy/ 16. Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., ... & Minx, J. C. (2018). Negative emissions—Part 2: Costs, potentials and side effects. Environmental research letters, 13(6), 063002. 17. Golosov, M., Hassler, J., Krusell, P., & Tsyvinski, A. (2014). Optimal taxes on fossil fuel in general equilibrium. Econometrica, 82(1), 41-88. 18. Green, J. F. (2017). Don't link carbon markets. Nature, 543(7646), 484-486. 19. Hickey, C., Fankhauser, S., Smith, S. M., & Allen, M. (2023). A review of commercialisation mechanisms for carbon dioxide removal. Frontiers in Climate, 4, 1101525. 20. Hotelling, H. (1931). The economics of exhaustible resources. Journal of political Economy, 39(2), 137-175. 21. HM Treasury. (2022) The Green Book. Retrieved from https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-government/the-green-book-2020 22. IPCC. (2018). Global warming of 1.5 ºC. Retrieved from https://www.ipcc.ch/sr15/ 23. IPCC. (2021). Climate Change 2021: The Physical Science Basis. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ 24. International Carbon Action Partnership (ICAP). (2021). Emissions trading systems and net zero: Trading removals. 25. IPCC. (2022). AR6 climate change 2022: Mitigation of climate change. Retrieved from https://www.ipcc.ch/report/ar6/wg3/ 26. IPCC. (2023). AR6 synthesis report: Climate change 2023. Retrieved from https://www.ipcc.ch/report/ar6/syr/ 27. I4CE. (2024). Maximising benefits of carbon pricing through carbon revenue use. 28. Jenkins, S., Mitchell-Larson, E., Ives, M. C., Haszeldine, S., & Allen, M. (2021). Upstream decarbonization through a carbon takeback obligation: an affordable backstop climate policy. Joule, 5(11), 2777-2796. 29. Jenkins, S., Kuijper, M., Helferty, H., Girardin, C., & Allen, M. (2023). Extended producer responsibility for fossil fuels. Environmental Research Letters, 18(1), 011005. 30. Kato, S., Lee, S., He, Y., Yoshioka, T., Morotomi, T., & Chewpreecha, U. (2023). Impact of Carbon Neutrality on the Economy and Industry Assuming Japan’s Achievement of 2030 Power Mix Plan: A 2050 Perspective Based on the E3ME Macro-Econometric Model. Energies, 16(18), 6661. 31. McKinsey & Company. (2009). Pathways to a low-carbon economy: Version 2 of the global greenhouse gas abatement cost curve. 32. Mercure, J. F., Pollitt, H., Edwards, N. R., Holden, P. B., Chewpreecha, U., Salas, P., ... & Vinuales, J. E. (2018). Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy strategy reviews, 20, 195-208. 33. Mercure, J. F., Salas, P., Vercoulen, P., Semieniuk, G., Lam, A., Pollitt, H., ... & Viñuales, J. E. (2021). Reframing incentives for climate policy action. Nature Energy, 6(12), 1133-1143. 34. Nordhaus, W. D. (2010). Economic aspects of global warming in a post-Copenhagen environment. Proceedings of the National Academy of Sciences, 107(26), 11721-11726. 35. Oxera. (2022). Market design for negative emissions in the UK ETS. 36. Pigou, A. C. (1932). The economics of welfare 4th. Basingstoke: Palgrave Macmillan. 37. Royal Society. (2018). Greenhouse gas removal. Retrieved from https://royalsociety.org/news-resources/projects/greenhouse-gas-removal/ 38. Rafaty, R., Dolphin, G., & Pretis, F. (2020). Carbon pricing and the elasticity of CO2 emissions. Nature Climate Change, 10, 581-586. 39. Rickels, W., Rothenstein, R., Schenuit, F., & Fridahl, M. (2022). Procure, bank, release: carbon removal certificate reserves to manage carbon prices on the path to net-zero. Energy Research & Social Science, 94, 102858. 40. Stern, N. (2006). Stern Review: The economics of climate change. 41. Stark, C., Thompson, M., Andrew, T., Beasley, G., Bellamy, O., Budden, P., ... & Vause, E. (2019). Net Zero: The UK’s contribution to stopping global warming. 42. Shaw, D., & Fu, Y. H. (2020). Climate clubs with tax revenue recycling, tariffs, and transfers. Climate Change Economics, 11(04), 2040008. 43. Strefler, J., Kriegler, E., Bauer, N., Luderer, G., Pietzcker, R. C., Giannousakis, A., & Edenhofer, O. (2021). Alternative carbon price trajectories can avoid excessive carbon removal. Nature Communications, 12(1), 2264. 44. Semieniuk, G., Holden, P. B., Mercure, J. F., Salas, P., Pollitt, H., Jobson, K., ... & Viñuales, J. E. (2022). Stranded fossil-fuel assets translate to major losses for investors in advanced economies. Nature Climate Change, 12(6), 532-538. 45. Shaw, D., Fu, Y. H., & Chen, Y. Q. (2023). East Asia climate club: Pathway toward 2050 net-zero. Climate Change Economics, 14(04), 2340005. 46. Smith, S., Geden, O., Gidden, M., Lamb, W., Nemet, G., Minx, J., ... & Vaughan, N. (2024). The state of carbon dioxide removal. 47. Thompson, M., Stark, C., & Climate Change Committee. (2019). Net Zero–Technical Report. 48. Tarruella, M., Huber, R., Mack, G., El Benni, N., & Finger, R. (2023). Cost-effectiveness of farm-vs. regional-level climate change mitigation policies. Q Open, qoad022. 49. Vogt-Schilb, A., Meunier, G., & Hallegatte, S. (2018). When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment. Journal of Environmental Economics and Management, 88, 210-233. 50. World Bank (WB). (2023, April 20). What you need to know about abatement costs and decarbonisation. Retrieved from https://www.worldbank.org/en/news/feature/2023/04/20/what-you-need-to-know-about-abatement-costs-and-decarbonisation 51. World Bank. (2024). State and trends of carbon pricing 2024.zh_TW