Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 監控多元品質變數比之EWMA變異數管制圖
EWMA Variability Control Charts for Monitoring Ratios of Multivariate Quality Variables
作者 林郁嘉
Lin, Yu-Chia
貢獻者 楊素芬
Yang, Su-Fen
林郁嘉
Lin, Yu-Chia
關鍵詞 多元相依變數比
統計過程管制
資料深度
管制圖
指數加權移動平均
符號檢定
Ratios of multiple correlated variables
Multivariate statistical process control
Data depth
Control chart
Exponentially weighted moving average
Sign method
Quality variable
日期 2024
上傳時間 4-Sep-2024 14:57:34 (UTC+8)
摘要 近年來,維持和改進產品品質的重要議題,也是多元統計過程管制(MSPC)之重要研究領域。但是,在追蹤多變量品質變數比的分散程度的議題文獻中尚少探討。因此,我們提出了無分配假設下的管制圖來追蹤多個相依品質變數比之變異數以了解製程在穩定或失控的狀況。 在本研究中,我們分別提出兩種無分佈假設的方法,以建立兩個不同的EWMA管制圖。第一種我們提出使用資料深度 (data depth) 方法來建立EWMAD管制圖來監控多個相依變數比之變異數,第二種我們考慮符號方法 (sign method),定義指標變數分配以建立管制圖來監控多個相依變數比之變異數。我們分別再以數值分析評估母體在三元常態和伽瑪分配下,兩個管制圖的管制界線與失控下的偵測效率。最後,我們透過實際多元牛奶數據來展示它們的應用和驗證失控的偵測能力。
In recent years, the variability of ratios of multivariate quality variables has become a crucial study of Multivariate Statistical Process Control (MSPC). However, there has been little exploration for the variability of ratios of dependent quality variables in the MSPC literature. Therefore, we propose control charts considering the distribution free assumption to track the variance stability and instability of the ratios of multiple dependent quality variables. In this study, we propose two methods of establishing EWMA control charts without the specified distribution of multivariate quality variables. Firstly, we introduce the ZEWMAD control chart using data depth methods monitor the variance of ratios of multiple dependent quality variables. Secondly, we consider the sign method defining indicator variable distribution to establish a control chart for monitoring the variance of ratios of multiple dependent quality variables. We calculate the control limits of the proposed charts and evaluate their out-of-control detection ability considering three-dimensional normal and gamma distributions through numerical analysis. Finally, we demonstrate the out-of-control detection performance of these proposed charts using a real multivariate milk data.
參考文獻 [1] Alt, F. B. (1985). Multivariate quality control. Encyclopedia of Statistical Sciences, 6, 110–122. John Wiley, New York. [2] Aitchison, J. (2005). A concise guide to compositional data analysis. In Compositional Data Analysis Workshop. [3] Celano, G., Castagliola, P., Faraz, A., & Fichera, S. (2014). Statistical performance of a control chart for individual observations monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 30(8), 1361-1377. [4] Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), 448-459. [5] Marsaglia, G. (2006) Ratios of Normal Variables. Journal of Statistical Software, 16, 1-10. [6] Hinkley DV (1969). On the Ratio of Two Correlated Normal Random Variables. Biometrika, 56, 635–639. [7] Hotelling, H. (1947). Multivariate quality control. Techniques of statistical analysis. McGraw-Hill, New York. [8] Izawa, T. (1965). Two or Multi-dimensional Gamma-type Distribution and Its Application to Rainfall Data. Meteorology and Geophysics, 15, 167-200. [9] Kibble, W. F. (1941). A Two-Variate Gamma Type Distribution. Sankhya , 5, 137-150. [10] Lee, R. Y., Holland, B. S., & Flueck, J. A. (1979). Distribution of a ratio of correlated gamma random variables. SIAM Journal on Applied Mathematics, 36(2), 304-320. [11] Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), 1380-1387. [12] Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53. [13] Marsaglia, G. (1965). Ratios of Normal Variables and Ratios of Sums of Uniform Variables. Journal of the American Statistical Association, 60, 193–204. [14] Montgomery, D. C. (2020). Introduction to statistical quality control, 8. John Wiley & Sons, Hoboken. [15] Nadarajah S (2006). On the Ratio X/Y for Some Elliptically Symmetric Random Variables. Journal of Multivariate Analysis, 97, 342–358. [16] Nguyen, H. D., Tran, K. P., & Heuchenne, C. (2019). Monitoring the ratio of two normal variables using variable sampling interval exponentially weighted moving average control charts. Quality and Reliability Engineering International, 35(1), 439- 460. [17] Panaretos, J., Psarakis, S. & Xekalaki, E. (1997). The Correlated Gamma-Ratio Distribution in Model Evaluation and Selection. Technical Report no. 33, Department of Statistics, Athens University of Economics and Business. [18] William R. Atchley, Charles T. Gaskins and Dwane Anderson. (1976). Statistical Properties of Ratios. I. Empirical Results. Systematic Zoology, 25(2), 137-148. [19] Yang, S. F., Lin, J. S., & Cheng, S. W. (2011). A new nonparametric EWMA sign control chart. Expert Systems with Applications, 38(5), 6239-6243. [20] Yang, S. F. (2016). An improved distribution-free EWMA mean chart. Communications in Statistics-Simulation and Computation, 45(4), 1410-1427. [21] Yang, S. F., & Barry C. Arnold. (2016). A new approach for monitoring process variance. Journal of Statistical Computation and Simulation, 86(14), 2749-2765. [22] Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A Phase II depth‐based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International, 37(6), 2384-2398. [23] Yang S-F, Arnold BC, Liu Y-l, Lu M-C, Lu S-L. (2022). A new phase II EWMA dispersion control chart. Quality and Reliability Engineering International. 1635–1658. [24] Zou, C., & Tsung, F. (2011). A multivariate sign EWMA control chart. Technometrics, 53(1), 84-97.
描述 碩士
國立政治大學
統計學系
111354030
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0111354030
資料類型 thesis
dc.contributor.advisor 楊素芬zh_TW
dc.contributor.advisor Yang, Su-Fenen_US
dc.contributor.author (Authors) 林郁嘉zh_TW
dc.contributor.author (Authors) Lin, Yu-Chiaen_US
dc.creator (作者) 林郁嘉zh_TW
dc.creator (作者) Lin, Yu-Chiaen_US
dc.date (日期) 2024en_US
dc.date.accessioned 4-Sep-2024 14:57:34 (UTC+8)-
dc.date.available 4-Sep-2024 14:57:34 (UTC+8)-
dc.date.issued (上傳時間) 4-Sep-2024 14:57:34 (UTC+8)-
dc.identifier (Other Identifiers) G0111354030en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/153370-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 111354030zh_TW
dc.description.abstract (摘要) 近年來,維持和改進產品品質的重要議題,也是多元統計過程管制(MSPC)之重要研究領域。但是,在追蹤多變量品質變數比的分散程度的議題文獻中尚少探討。因此,我們提出了無分配假設下的管制圖來追蹤多個相依品質變數比之變異數以了解製程在穩定或失控的狀況。 在本研究中,我們分別提出兩種無分佈假設的方法,以建立兩個不同的EWMA管制圖。第一種我們提出使用資料深度 (data depth) 方法來建立EWMAD管制圖來監控多個相依變數比之變異數,第二種我們考慮符號方法 (sign method),定義指標變數分配以建立管制圖來監控多個相依變數比之變異數。我們分別再以數值分析評估母體在三元常態和伽瑪分配下,兩個管制圖的管制界線與失控下的偵測效率。最後,我們透過實際多元牛奶數據來展示它們的應用和驗證失控的偵測能力。zh_TW
dc.description.abstract (摘要) In recent years, the variability of ratios of multivariate quality variables has become a crucial study of Multivariate Statistical Process Control (MSPC). However, there has been little exploration for the variability of ratios of dependent quality variables in the MSPC literature. Therefore, we propose control charts considering the distribution free assumption to track the variance stability and instability of the ratios of multiple dependent quality variables. In this study, we propose two methods of establishing EWMA control charts without the specified distribution of multivariate quality variables. Firstly, we introduce the ZEWMAD control chart using data depth methods monitor the variance of ratios of multiple dependent quality variables. Secondly, we consider the sign method defining indicator variable distribution to establish a control chart for monitoring the variance of ratios of multiple dependent quality variables. We calculate the control limits of the proposed charts and evaluate their out-of-control detection ability considering three-dimensional normal and gamma distributions through numerical analysis. Finally, we demonstrate the out-of-control detection performance of these proposed charts using a real multivariate milk data.en_US
dc.description.tableofcontents Chapter 1. Introduction 18 1.1 Literature review 18 1.2 Study motivation and proposed research methods 21 Chapter 2. The In-control Distributions of Estimators for Monitoring the 22 Variances of Ratios of Multivariate Quality Variables 22 2.1 The distribution of estimator for monitoring the variances of ratios of 22 multivariate quality variables 22 2.2 The procedure to generate data from a multivariate gamma distribution 22 2.2.1 The method to generate data from a multivariate gamma distribution 22 2.2.2 The pdf and the moments of ratio of multivariate gamma distribution 23 2.2.3 Nine combinations of parameters for the trivariate gamma distribution 25 2.3 The procedure to generate data from a multivariate normal distribution 34 2.3.1 The method to generate data from a multivariate normal distribution 34 2.3.2 Approximated formula for ratios of the multivariate quality variables 36 2.3.3 Different combinations of parameters of the in-control multivariate normal distribution 37 Chapter 3. Data-depth Based EWMA Variability Control Chart for Monitoring the Ratios of Multivariate Quality Variables 39 3.1 Design of the new ZEWMAD chart for monitoring process dispersion of ratios 39 3.2 The procedure to determine the control limits and average run lengths of the ZEWMAD chart 41 Chapter 4. The Sign Based ZEWMA-SN Chart to Monitor Process Dispersion of the Ratios of Multivariate Variables 43 4.1 Design of the sign based ZEWMA-SN chart for monitoring process dispersion of ratios 43 4.2 The procedure to determine the control limits and average run lengths of the ZEWMA-SN chart 44 Chapter 5. The Out-of-control Distributions of the Different Estimators of the Variances of Ratios under Multivariate Quality Variables 47 5.1 The procedure to determine the unknown parameters for an out-of-control multivariate gamma distribution 47 5.1.1 The procedure to find the out-of-control parameters when only one of the parameters (\mathbit{\alpha}\mathbf{1}, \mathbit{\alpha}\mathbf{2}, \mathbit{\alpha}\mathbf{3}) changes 48 5.2 The procedure to determine the unknown parameters for an out-of-control multivariate normal distribution 55 5.2.1 The procedure to determine the unknown parameters in an out-of-control multivariate normal distribution when only change the first variance of ratios 55 5.2.2 The procedure to determine the unknown parameters in an out-of-control multivariate normal distribution when only change the second variance of ratios 80 Chapter 6. Out-of-Control Detection Performance Comparisons of the Proposed EWMA Variances of Ratios Control Charts 97 6.1 Detection performance comparison of the proposed ZEWMAD chart under 2 different multivariate distributions 97 6.1.1 The procedure to determine the detection performance of the ZEWMAD chart 97 6.1.2 The detection performance of the proposed ZEWMAD chart for a multivariate gamma distribution 100 6.1.3 The detection performance of the proposed ZEWMAD chart for a multivariate normal distribution 109 6.2 Detection performance comparison of the proposed ZEWMA-SN chart for the two different multivariate distributions 129 6.2.1 The procedure to determine the detection performance of the ZEWMA-SN chart 129 6.2.2 The detection performance of the proposed ZEWMA-SN chart for a multivariate gamma distribution 129 6.2.3 The detection performance of the proposed ZEWMA-SN chart for a multivariate normal Distribution 138 6.3 The summary of the calculated parameters of the proposed ZEWMA-SN chart for a multivariate gamma distribution 158 6.4 The summary of the calculated parameters of the proposed ZEWMA-SN chart for a multivariate normal distribution 162 6.4.1 The summary of the calculated parameters of the proposed ZEWMA-SN chart when the first variance of ratio changes for a multivariate normal distribution 162 6.4.2 The summary of the calculated parameters of the proposed ZEWMA-SN chart when the second variance of ratio changes for a multivariate normal distribution 168 Chapter 7. Performance Comparison Between the ZEWMAD and ZEWMA-SN Charts 174 7.1 Performance comparison between the ZEWMAD and ZEWMA-SN Charts with the different multivariate distributions 174 7.2 Performance comparison between the two ZEWMAD charts with the different multivariate distributions 179 7.3 Performance comparison between the two ZEWMA-SN charts with the different multivariate distributions 180 Chapter 8. Application of the ZEWMAD and ZEWMA-SN Charts Using a Multivariate Milk Data Set 182 Chapter 9. Summary 192 References 193   List of Tables Table 2 - 1 The mean vectors, covariance matrices and skewnesses in combinations 1~3 of the trivariate gamma distribution 25 Table 2 - 2 The mean vectors, covariance matrices and skewnesses in combinations 4~6 of the trivariate gamma distribution 26 Table 2 - 3 The mean vectors, covariance matrices and skewnesses in combinations 7~9 of the trivariate gamma distribution 27 Table 2 - 4 Two combinations of parameters of mean vector and covariance matrices of trivariate distribution and ratios 35 Table 3 - 1 The values of LCL, ARL0, MRL0, SDRL0 for the ZEWMAD chart. 42 Table 4- 1 The values of UCL, LCL, ARL0, MRL0 and SDRL0 under different \lambda and nominal ARL0 for ZEWMA-SN chart 46 Table 5 - 1 Out-of-control variance of R2 based on different \delta2 in the first combination of parameters 49 Table 5 - 2 Out-of-control covariance of ratios based on different \delta1,\delta2 in the first combination of parameters 49 Table 5 -3 \alpha1\ast values based on different \delta2\ in the first combination of parameters 50 Table 5 -4 \alpha2\ast values based on different \delta2\ in the first combination of parameters 51 Table 5 - 5 \alpha3\ast values based on different \delta2\ in the first combination of parameters 52 Table 5 - 6 The out-of-control variance of R2 based on different \delta2 in the second combination of parameters 52 Table 5 -7 Out-of-control covariance of ratios based on different \delta1,\delta2 in the second combination of parameters 53 Table 5 - 8 \alpha1\ast values based on different \delta2\ in the second combination of parameters 54 Table 5 - 9 \alpha2\ast values based on different \delta2\ in the second combination of parameters 54 Table 5 - 10 \alpha3\ast values based on different \delta2\ in the second combination of parameters 55 Table 5 - 11 Variance of R1 under different scale parameters in the first combination of parameters under a trivariate normal distribution 58 Table 5 - 12 \sigma X1\ast values based on different \delta1\ in the first combination of parameters under a trivariate normal distribution 60 Table 5 - 13 \sigma X1\ast2, \sigma X1,X2\ast and \sigma X1,X3\ast values based on different \delta1\ in the first combination of parameters under a trivariate normal distribution 61 Table 5 - 14 Variance of R1 under different scale parameter in the second combination of parameters under a trivariate normal distribution 62 Table 5 - 15 \sigma X1\ast values based on different \delta1\ in the second combination of parameters under a trivariate normal distribution 63 Table 5 - 16 \sigma X1\ast2, \sigma X1,X2\ast and \sigma X1,X3\ast values based on different \delta1\ in the second combination of parameters under a trivariate normal distribution 64 Table 5 -17 \sigma X3\ast values based on different \delta1\ in the first combination of parameters under a trivariate normal distribution 67 Table 5 - 18 \sigma X3\ast, \sigma X1,X3\ast and \sigma X2,X3\ast values based on different \delta1\ in the first combination of parameters under a trivariate normal distribution 68 Table 5 - 19 \sigma X3\ast values based on different \delta1\ in the second combination of parameters under a trivariate normal distribution 69 Table 5 - 20 \sigma X3\ast, \sigma X1,X3\ast and \sigma X2,X3\ast values based on different \delta1\ in the second combination of parameters under a trivariate normal distribution 70 Table 5 - 21 \sigma X1\ast and \sigma X3\ast values based on different \delta1\ in the first combination of parameters under a trivariate normal distribution 75 Table 5 - 22 \sigma X1\ast2, \sigma X3\ast2,\sigma X1,X2\ast, \sigma X1,X3\ast and \sigma X2,X3\ast values based on different \delta1\ in the first combination of parameters under a trivariate normal distribution 76 Table 5 - 23 \sigma X1\ast and \sigma X3\ast values based on different \delta1\ in the second combination of parameters under a trivariate normal distribution 78 Table 5 - 24 \sigma X1\ast2, \sigma X3\ast2,\sigma X1,X2\ast, \sigma X1,X3\ast and \sigma X2,X3\ast values based on different \delta1\ in the second combination of parameters under a trivariate normal distribution 79 Table 5 - 25 Variance of R2 under different scale parameter in the first combination of parameters under a trivariate normal distribution 81 Table 5 - 26 \sigma X2\ast values based on different \delta2\ in the first combination of parameters under a trivariate normal distribution 81 Table 5 - 27 \sigma X1\ast2, \sigma X1,X2\ast and \sigma X2,X3\ast values based on different \delta2\ in the first combination of parameters under a trivariate normal distribution 82 Table 5 -28 Variance of R2 under different scale parameter in the second combination of parameters under a trivariate normal distribution 84 Table 5 - 29 \sigma X2\ast values based on different \delta2\ in the second combination of parameters under a trivariate normal distribution 84 Table 5 -30 \sigma X2\ast2, \sigma X1,X2\ast, \sigma X2,X3\ast values based on different \delta2\ in the second combination of parameters under a trivariate normal distribution 85 Table 5 - 31 \sigma X3\ast values based on different \delta2\ in the first combination of parameters under a trivariate normal distribution 87 Table 5 - 32 \sigma X3\ast2, \sigma X1,X3\ast and \sigma X2,X3\ast values based on different \delta2\ in the first combination of parameters under a trivariate normal distribution 88 Table 5 - 33 \sigma X3\ast values based on different \delta2\ in the second combination of parameters under a trivariate normal distribution 89 Table 5 - 34 \sigma X3\ast2, \sigma X1,X3\ast and \sigma X2,X3\ast values based on different \delta2\ in the second combination of parameters under a trivariate normal distribution 90 Table 5 - 35 \sigma X2\ast, \sigma X3\ast values based on different \delta2\ in the first combination of parameters under a trivariate normal distribution 91 Table 5 - 36 \sigma X2\ast2, \sigma X3\ast2,\ \ \sigma X1,X2\ast, \sigma X1,X3\ast and \sigma X2,X3\ast values based on different \delta2\ in the first combination of parameters under a trivariate normal distribution 93 Table 5 - 37 \sigma X2\ast, \sigma X3\ast values based on different \delta2\ in the second combination of parameters under a trivariate normal distribution 94 Table 5 - 38 \sigma X2\ast2, \sigma X3\ast2,\ \ \sigma X1,X2\ast, \sigma X1,X3\ast and \sigma X2,X3\ast values based on different \delta2\ in the second combination of parameters under a trivariate normal distribution 96 Tables 6 - 1 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 200 under the first combination of parameters for a trivariate gamma distribution 101 Tables 6 - 2 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 200 under the second combination of parameters for a trivariate gamma distribution 103 Tables 6 - 3 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 370.4 under the first combination of parameters for a trivariate gamma distribution 105 Tables 6 - 4 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 370.4 under the second combination of parameters for a trivariate gamma distribution 107 Tables 6 - 5 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 200 when the first variance of ratio changes under the first combination of parameters for a trivariate normal distribution 110 Tables 6 - 6 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 370.4 when the first variance of ratio changes under the first combination of parameters for a trivariate normal distribution 113 Tables 6 - 7 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 200 when the first variance of ratio changes under the second combination of parameters for a trivariate normal distribution 116 Tables 6 - 8 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 370.4 when the first variance of ratio changes under the second combination of parameters for a trivariate normal distribution 118 Tables 6 - 9 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 200 when the second variance of ratio changes under the first combination of parameters for a trivariate normal distribution 121 Tables 6 - 10 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 370.4 when the second variance of ratio changes under the first combination of parameters for a trivariate normal distribution 123 Tables 6 - 11 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 200 when the second variance of ratio changes under the second combination of parameters for a trivariate normal distribution 125 Tables 6 - 12 ARL1s, MRL1s, SDRL1s of the proposed ZEWMAD chart with nominal ARL0 = 370.4 when the second variance of ratio changes under the second combination of parameters for a trivariate normal distribution 127 Tables 6 - 13 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 200 under the first combination of parameters for a trivariate gamma distribution 130 Tables 6 - 14 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 370.4 under the first combination of parameters for a trivariate gamma distribution 132 Tables 6 - 15 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 200 under the second combination of parameters for a trivariate gamma distribution 134 Tables 6 - 16 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 370.4 under the second combination of parameters for a trivariate gamma distribution 136 Tables 6 - 17 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN charts with nominal ARL0 = 200 when the first variance of ratio changes under the first combination of parameters for a trivariate normal distribution 139 Tables 6 - 18 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 370.4 when the first variance of ratio changes under the first combination of parameters for a trivariate normal distribution 142 Tables 6 - 19 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 200 when the first variance of ratio changes under the second combination of parameters for a trivariate normal distribution 145 Tables 6 - 20 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 370.4 when the first variance of ratio changes under the second combination of parameters for a trivariate normal distribution 147 Tables 6 - 21 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 200 when the second variance of ratio changes under the first combination of parameters for a trivariate normal distribution 150 Tables 6 - 22 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 370.4 when the second variance of ratio changes under the first combination of parameters for a trivariate normal distribution 152 Tables 6 - 23 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 200 when the second variance of ratio changes under the second combination of parameters for a trivariate normal distribution 154 Tables 6 - 24 ARL1s, MRL1s, SDRL1s of the proposed ZEWMA-SN chart with nominal ARL0 = 370.4 when the second variance of ratio changes under the second combination of parameters for a trivariate normal distribution 156 Table 6 - 25 \delta1,\ \ \sigma R1\ast2,\ \ p1 and \alpha i\ast, i = 1, 2, 3 of the proposed ZEWMA-SN chart under the first combination of parameters for a trivariate gamma distribution 159 Table 6 - 26 \delta1,\ \ \sigma R1\ast2,\ \ p1 and \alpha i\ast, i = 1, 2, 3 of the proposed ZEWMA-SN chart under the second combination of parameters for a trivariate gamma distribution 160 Table 6 - 27 The relationship of \delta2 with calculated parameters in the multivariate gamma distribution 161 Tables 6 - 28 \delta2,\ \ \sigma R2\ast2,\ \ p1 and covariance matrices of the proposed ZEWMA-SN chart when the first variance of ratio changes under the first combination of parameters for a trivariate normal distribution 163 Tables 6 - 29 \delta2,\ \ \sigma R2\ast2,\ \ p1 and covariance matrixes of the proposed ZEWMA-SN chart when the first variance of ratio changes under the second combination of parameters for a trivariate normal distribution 165 Table 6 - 30 The relationship of \delta1 with calculated parameters in the multivariate normal distribution 167 Table 6 - 31 \delta2,\ \ \sigma R2\ast2,\ \ p1 and covariance matrices of the proposed ZEWMA-SN chart when the second variance of ratio changes under the first combination of parameters for a trivariate normal distribution 169 Table 6 - 32 \delta1,\ \ \sigma R1\ast2,\ \ p1 and covariance matrices of the proposed ZEWMA-SN chart when the second variance of ratio changes under the second combination of parameters for a trivariate normal distribution 171 Table 6 - 33 The relationship of \delta2 with calculated parameters in the multivariate normal distribution 173 Table7- 1 ARL1 comparison for the proposed charts for a trivariate gamma distribution 175 Table 7- 2 ARL1 comparison for the proposed charts when \delta1 changes for a trivariate normal distribution 177 Table7- 3 ARL1 comparison for the proposed charts when \delta2 changes for a trivariate normal distribution 178 Table7- 4 ARL1 comparison for ZEWMAD chart with various \delta2 under a trivariate distribution 179 Table 7- 5 ARL1 comparison for ZEWMA-SN chart with various \delta2 under a trivariate distribution 180 Table 8- 1 The control group of the multivariate milk data 183 Table 8- 2 The treatment group of the multivariate milk data 184 Table 8- 3 The three normality tests for the in-control data of milk components 185 Table 8- 4 The three normality tests for the out-of-control data of milk components 185 List of Figures FIGURE 1 SCATTER PLOT OF DIFFERENT PARAMETERS COMBINATION FOR 3-DIMENSIONAL GAMMA DISTRIBUTION AND 2-DIMENSIONAL RATIOS 28 FIGURE 2 SCATTER PLOT OF DIFFERENT PARAMETERS COMBINATION FOR 3-DIMENSIONAL GAMMA DISTRIBUTION AND 2-DIMENSIONAL RATIOS (CONTINUE THE FIGURE 1) 29 FIGURE 3 SCATTER PLOT OF DIFFERENT PARAMETERS COMBINATION FOR 3-DIMENSIONAL GAMMA DISTRIBUTION AND 2-DIMENSIONAL RATIOS (CONTINUE THE FIGURE 2) 30 FIGURE 4 THE IC MILK CHARTING STATISTICS ON THE ZEWMAD CHART 188 FIGURE 5 THE OC MILK CHARTING STATISTICS ON THE ZEWMAD CHART 189 FIGURE 6 THE IC MILK CHARTING STATISTICS ON THE ZEWMA-SN CHART 190 FIGURE 7 THE OC MILK CHARTING STATISTICS FOR THE ZEWMA-SN CHART 191zh_TW
dc.format.extent 3958333 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0111354030en_US
dc.subject (關鍵詞) 多元相依變數比zh_TW
dc.subject (關鍵詞) 統計過程管制zh_TW
dc.subject (關鍵詞) 資料深度zh_TW
dc.subject (關鍵詞) 管制圖zh_TW
dc.subject (關鍵詞) 指數加權移動平均zh_TW
dc.subject (關鍵詞) 符號檢定zh_TW
dc.subject (關鍵詞) Ratios of multiple correlated variablesen_US
dc.subject (關鍵詞) Multivariate statistical process controlen_US
dc.subject (關鍵詞) Data depthen_US
dc.subject (關鍵詞) Control charten_US
dc.subject (關鍵詞) Exponentially weighted moving averageen_US
dc.subject (關鍵詞) Sign methoden_US
dc.subject (關鍵詞) Quality variableen_US
dc.title (題名) 監控多元品質變數比之EWMA變異數管制圖zh_TW
dc.title (題名) EWMA Variability Control Charts for Monitoring Ratios of Multivariate Quality Variablesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Alt, F. B. (1985). Multivariate quality control. Encyclopedia of Statistical Sciences, 6, 110–122. John Wiley, New York. [2] Aitchison, J. (2005). A concise guide to compositional data analysis. In Compositional Data Analysis Workshop. [3] Celano, G., Castagliola, P., Faraz, A., & Fichera, S. (2014). Statistical performance of a control chart for individual observations monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 30(8), 1361-1377. [4] Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), 448-459. [5] Marsaglia, G. (2006) Ratios of Normal Variables. Journal of Statistical Software, 16, 1-10. [6] Hinkley DV (1969). On the Ratio of Two Correlated Normal Random Variables. Biometrika, 56, 635–639. [7] Hotelling, H. (1947). Multivariate quality control. Techniques of statistical analysis. McGraw-Hill, New York. [8] Izawa, T. (1965). Two or Multi-dimensional Gamma-type Distribution and Its Application to Rainfall Data. Meteorology and Geophysics, 15, 167-200. [9] Kibble, W. F. (1941). A Two-Variate Gamma Type Distribution. Sankhya , 5, 137-150. [10] Lee, R. Y., Holland, B. S., & Flueck, J. A. (1979). Distribution of a ratio of correlated gamma random variables. SIAM Journal on Applied Mathematics, 36(2), 304-320. [11] Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), 1380-1387. [12] Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53. [13] Marsaglia, G. (1965). Ratios of Normal Variables and Ratios of Sums of Uniform Variables. Journal of the American Statistical Association, 60, 193–204. [14] Montgomery, D. C. (2020). Introduction to statistical quality control, 8. John Wiley & Sons, Hoboken. [15] Nadarajah S (2006). On the Ratio X/Y for Some Elliptically Symmetric Random Variables. Journal of Multivariate Analysis, 97, 342–358. [16] Nguyen, H. D., Tran, K. P., & Heuchenne, C. (2019). Monitoring the ratio of two normal variables using variable sampling interval exponentially weighted moving average control charts. Quality and Reliability Engineering International, 35(1), 439- 460. [17] Panaretos, J., Psarakis, S. & Xekalaki, E. (1997). The Correlated Gamma-Ratio Distribution in Model Evaluation and Selection. Technical Report no. 33, Department of Statistics, Athens University of Economics and Business. [18] William R. Atchley, Charles T. Gaskins and Dwane Anderson. (1976). Statistical Properties of Ratios. I. Empirical Results. Systematic Zoology, 25(2), 137-148. [19] Yang, S. F., Lin, J. S., & Cheng, S. W. (2011). A new nonparametric EWMA sign control chart. Expert Systems with Applications, 38(5), 6239-6243. [20] Yang, S. F. (2016). An improved distribution-free EWMA mean chart. Communications in Statistics-Simulation and Computation, 45(4), 1410-1427. [21] Yang, S. F., & Barry C. Arnold. (2016). A new approach for monitoring process variance. Journal of Statistical Computation and Simulation, 86(14), 2749-2765. [22] Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A Phase II depth‐based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International, 37(6), 2384-2398. [23] Yang S-F, Arnold BC, Liu Y-l, Lu M-C, Lu S-L. (2022). A new phase II EWMA dispersion control chart. Quality and Reliability Engineering International. 1635–1658. [24] Zou, C., & Tsung, F. (2011). A multivariate sign EWMA control chart. Technometrics, 53(1), 84-97.zh_TW