學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 基於直方圖-視覺之雙變換器架構的白平衡校正
HVDualformer: Histogram-Vision Dual Transformer for White Balance Correction作者 陳冠融
Chen, Guan-Rong貢獻者 彭彥璁
Peng, Yan-Tsung
陳冠融
Chen, Guan-Rong關鍵詞 色彩一致性
白平衡
變換器
Color Constancy
White Balance
Transformer日期 2024 上傳時間 4-九月-2024 14:59:56 (UTC+8) 摘要 在不同色溫條件下拍攝照片可能導致色偏,使呈現的顏色與人眼通常看到的顏色不同。消除這樣的色溫偏移以實現白平衡是一項具有挑戰性的任務。它需要考慮來自不同光源的色調變化,並確定一個單一的參考點來消除色偏。深度神經網絡的出現顯著推動了白平衡方法的進展,從找到場景照明顏色到直接從顏色偏移的輸入中獲得色彩一致的圖像。為了更好地從輸入圖像中提取顏色分佈和場景信息以進行白平衡,我們提出了HVDualformer,一種直方圖-視覺雙變換器架構,可以校正圖像色溫直方圖中的色溫特徵並將其與圖像特徵相關聯。所提出的HVDualformer可以處理單一光源和多光源的兩種情況。對公開基準數據集的廣泛實驗結果表明,所提出的模型在性能上優於最先進的方法。
Shooting photos under different color temperatures could lead to color casts, causing the presented color to be different from what human eyes see normally. Removing such color temperature shifts to achieve white balance is a challenging task. It needs to consider color tone variations from different light sources and pinpoint a single reference point to remove color casts. The emergence of deep neural networks has significantly advanced the progress of white balance methods, from finding the scene illumination color to obtaining a color-consistent image directly from the color-shifted input. To better extract color distributions and scene information from the input image for white balance, we propose HVDualformer, a histogram-vision dual transformer architecture that rectifies color temperature features from image color histograms and correlates them with image features. The proposed HVDualformer can handle both scenarios with the single-light source and multiple-light source. The extensive experimental results on public benchmark datasets show that the proposed model performs favorably against state-of-the-art methods.參考文獻 [1] Mahmoud Afifi and Michael S Brown. Deep white-balance editing. In CVPR, 2020. [2] Mahmoud Afifi, Marcus A Brubaker, and Michael S Brown. Auto white-balance correction for mixed-illuminant scenes. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022. [3] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S Brown. When color constancy goes wrong: Correcting improperly white-balanced images. In CVPR, 2019. [4] Nikola Banić, Karlo Koščević, and Sven Lončarić. Unsupervised learning for color constancy. arXiv preprint arXiv:1712.00436, 2017. [5] Jonathan T Barron. Convolutional color constancy. In ICCV, 2015. [6] Jonathan T Barron and Ben Poole. The fast bilateral solver. In ECCV, 2016. [7] Jonathan T Barron and Yun-Ta Tsai. Fast fourier color constancy. In CVPR, 2017. [8] Simone Bianco and Claudio Cusano. Quasi-unsupervised color constancy. In CVPR, 2019. [9] Simone Bianco and Raimondo Schettini. Adaptive color constancy using faces. IEEE Trans. Pattern Analysis and Machine Intelligence., 2014. [10] David H Brainard and Brian A Wandell. Analysis of the retinex theory of color vision. JOSA A, 1986. 60 [11] Gershon Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin institute, 1980. [12] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning photographic global tonal adjustment with a database of input/output image pairs. In CVPR, 2011. [13] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In CVPR, 2021. [14] Dongliang Cheng, Dilip K Prasad, and Michael S Brown. Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. JOSA A, 2014. [15] Dinu Coltuc, Philippe Bolon, and J-M Chassery. Exact histogram specification. IEEE TIP, 15(5):1143–1152, 2006. [16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. [17] Graham Finlayson and Steven Hordley. Improving gamut mapping color constancy. IEEE TIP, 2000. [18] Graham D Finlayson, Steven D Hordley, and Ingeborg Tastl. Gamut constrained illuminant estimation. IJCV, 2006. [19] David A Forsyth. A novel algorithm for color constancy. IJCV, 1990. 61 [20] Peter Vincent Gehler, Carsten Rother, Andrew Blake, Tom Minka, and Toby Sharp. Bayesian color constancy revisited. In CVPR, pages 1–8. IEEE, IEEE Computer Society, 2008. [21] Arjan Gijsenij, Theo Gevers, and Joost Van De Weijer. Generalized gamut mapping using image derivative structures for color constancy. IJCV, 2010. [22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, 2018. [23] Yuanming Hu, Baoyuan Wang, and Stephen Lin. Fc4: Fully convolutional color constancy with confidence-weighted pooling. In CVPR, 2017. [24] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE international conference on computer vision, pages 1501–1510, 2017. [25] Thomas Kailath. The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology, 1967. [26] Hakki Can Karaimer and Michael S Brown. Improving color reproduction accuracy on cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6440–6449, 2018. [27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [28] Furkan Kınlı, Doğa Yılmaz, Barış Özcan, and Furkan Kıraç. Modeling the lighting in scenes as style for auto white-balance correction. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023. [29] Chunxiao Li, Xuejing Kang, and Anlong Ming. Wbflow: Few-shot white balance 62 for srgb images via reversible neural flows. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, pages 1026–1034, 2023. [30] Chunxiao Li, Xuejing Kang, Zhifeng Zhang, and Anlong Ming. Swbnet: a stable white balance network for srgb images. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023. [31] Yi-Chen Lo, Chia-Che Chang, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang, and Kevin Jou. Clcc: Contrastive learning for color constancy. In CVPR, 2021. [32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. [33] Gaurav Sharma, Wencheng Wu, and Edul N Dalal. The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 2005. [34] Wu Shi, Chen Change Loy, and Xiaoou Tang. Deep specialized network for illuminant estimation. In ECCV, 2016. [35] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. [36] Joost Van De Weijer, Theo Gevers, and Arjan Gijsenij. Edge-based color constancy. IEEE TIP, 2007. 63 [37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 2017. [38] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general u-shaped transformer for image restoration. In CVPR, 2022. [39] 陳彥蓉. 基於深度直方圖網路之水下影像還原模型. 碩士論文, 國立政治大學, 臺灣, 2022. 臺灣博碩士論文知識加值系統. 描述 碩士
國立政治大學
資訊科學系
111753139資料來源 http://thesis.lib.nccu.edu.tw/record/#G0111753139 資料類型 thesis dc.contributor.advisor 彭彥璁 zh_TW dc.contributor.advisor Peng, Yan-Tsung en_US dc.contributor.author (作者) 陳冠融 zh_TW dc.contributor.author (作者) Chen, Guan-Rong en_US dc.creator (作者) 陳冠融 zh_TW dc.creator (作者) Chen, Guan-Rong en_US dc.date (日期) 2024 en_US dc.date.accessioned 4-九月-2024 14:59:56 (UTC+8) - dc.date.available 4-九月-2024 14:59:56 (UTC+8) - dc.date.issued (上傳時間) 4-九月-2024 14:59:56 (UTC+8) - dc.identifier (其他 識別碼) G0111753139 en_US dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/153379 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊科學系 zh_TW dc.description (描述) 111753139 zh_TW dc.description.abstract (摘要) 在不同色溫條件下拍攝照片可能導致色偏,使呈現的顏色與人眼通常看到的顏色不同。消除這樣的色溫偏移以實現白平衡是一項具有挑戰性的任務。它需要考慮來自不同光源的色調變化,並確定一個單一的參考點來消除色偏。深度神經網絡的出現顯著推動了白平衡方法的進展,從找到場景照明顏色到直接從顏色偏移的輸入中獲得色彩一致的圖像。為了更好地從輸入圖像中提取顏色分佈和場景信息以進行白平衡,我們提出了HVDualformer,一種直方圖-視覺雙變換器架構,可以校正圖像色溫直方圖中的色溫特徵並將其與圖像特徵相關聯。所提出的HVDualformer可以處理單一光源和多光源的兩種情況。對公開基準數據集的廣泛實驗結果表明,所提出的模型在性能上優於最先進的方法。 zh_TW dc.description.abstract (摘要) Shooting photos under different color temperatures could lead to color casts, causing the presented color to be different from what human eyes see normally. Removing such color temperature shifts to achieve white balance is a challenging task. It needs to consider color tone variations from different light sources and pinpoint a single reference point to remove color casts. The emergence of deep neural networks has significantly advanced the progress of white balance methods, from finding the scene illumination color to obtaining a color-consistent image directly from the color-shifted input. To better extract color distributions and scene information from the input image for white balance, we propose HVDualformer, a histogram-vision dual transformer architecture that rectifies color temperature features from image color histograms and correlates them with image features. The proposed HVDualformer can handle both scenarios with the single-light source and multiple-light source. The extensive experimental results on public benchmark datasets show that the proposed model performs favorably against state-of-the-art methods. en_US dc.description.tableofcontents 1 Introduction 1 1.1 Motivation and Challenges 1 1.2 Contributions 3 1.3 Thesis Structure 5 2 Related Works 6 2.1 Traditional Color Constancy Methods 6 2.2 End-to End Color Correction in SRGB Images 9 2.2.1 Single Illuminant Input 10 2.2.2 Multiple Illuminant Inputs 14 2.3 Transformer 17 2.4 Limitation 18 3 Approach 20 3.1 Histoformer 21 3.2 Histogram-Specified Feature Transformation (HSFT) 23 3.3 Visformer 23 3.4 Loss Functions 24 4 Experimental Results 26 4.1 Datasets 26 4.2 Rendered WB dataset 27 4.2.1 The Rendered WB dataset-Set 1 27 4.2.2 The Rendered WB dataset-Set 2 27 4.2.3 Rendered Cube+ dataset 29 4.3 Experimental Settings 29 4.4 Experimental Results 31 4.4.1 Quantitative Results 32 4.4.2 Qualitative Results 33 4.5 Bhattacharyya-Based Image Histogram Analysis 33 4.6 Ablation Studies 34 4.7 HSFT Feature Analysis 37 5 HVDualformerW 38 5.1 Motivation and Challenges 38 5.2 Method 38 5.3 Loss functions 40 5.4 Evaluation on mixed illumination 40 5.4.1 Dataset & Experiment 42 6 More qualitative results 44 6.1 MIT-Adobe 5K dataset 44 6.2 Rendered WB dataset : Set1-Test, Set2 and rendered Cube+ dataset 45 7 Conclusion 59 Reference 60 zh_TW dc.format.extent 20600974 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0111753139 en_US dc.subject (關鍵詞) 色彩一致性 zh_TW dc.subject (關鍵詞) 白平衡 zh_TW dc.subject (關鍵詞) 變換器 zh_TW dc.subject (關鍵詞) Color Constancy en_US dc.subject (關鍵詞) White Balance en_US dc.subject (關鍵詞) Transformer en_US dc.title (題名) 基於直方圖-視覺之雙變換器架構的白平衡校正 zh_TW dc.title (題名) HVDualformer: Histogram-Vision Dual Transformer for White Balance Correction en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] Mahmoud Afifi and Michael S Brown. Deep white-balance editing. In CVPR, 2020. [2] Mahmoud Afifi, Marcus A Brubaker, and Michael S Brown. Auto white-balance correction for mixed-illuminant scenes. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022. [3] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S Brown. When color constancy goes wrong: Correcting improperly white-balanced images. In CVPR, 2019. [4] Nikola Banić, Karlo Koščević, and Sven Lončarić. Unsupervised learning for color constancy. arXiv preprint arXiv:1712.00436, 2017. [5] Jonathan T Barron. Convolutional color constancy. In ICCV, 2015. [6] Jonathan T Barron and Ben Poole. The fast bilateral solver. In ECCV, 2016. [7] Jonathan T Barron and Yun-Ta Tsai. Fast fourier color constancy. In CVPR, 2017. [8] Simone Bianco and Claudio Cusano. Quasi-unsupervised color constancy. In CVPR, 2019. [9] Simone Bianco and Raimondo Schettini. Adaptive color constancy using faces. IEEE Trans. Pattern Analysis and Machine Intelligence., 2014. [10] David H Brainard and Brian A Wandell. Analysis of the retinex theory of color vision. JOSA A, 1986. 60 [11] Gershon Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin institute, 1980. [12] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning photographic global tonal adjustment with a database of input/output image pairs. In CVPR, 2011. [13] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In CVPR, 2021. [14] Dongliang Cheng, Dilip K Prasad, and Michael S Brown. Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. JOSA A, 2014. [15] Dinu Coltuc, Philippe Bolon, and J-M Chassery. Exact histogram specification. IEEE TIP, 15(5):1143–1152, 2006. [16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. [17] Graham Finlayson and Steven Hordley. Improving gamut mapping color constancy. IEEE TIP, 2000. [18] Graham D Finlayson, Steven D Hordley, and Ingeborg Tastl. Gamut constrained illuminant estimation. IJCV, 2006. [19] David A Forsyth. A novel algorithm for color constancy. IJCV, 1990. 61 [20] Peter Vincent Gehler, Carsten Rother, Andrew Blake, Tom Minka, and Toby Sharp. Bayesian color constancy revisited. In CVPR, pages 1–8. IEEE, IEEE Computer Society, 2008. [21] Arjan Gijsenij, Theo Gevers, and Joost Van De Weijer. Generalized gamut mapping using image derivative structures for color constancy. IJCV, 2010. [22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, 2018. [23] Yuanming Hu, Baoyuan Wang, and Stephen Lin. Fc4: Fully convolutional color constancy with confidence-weighted pooling. In CVPR, 2017. [24] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE international conference on computer vision, pages 1501–1510, 2017. [25] Thomas Kailath. The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology, 1967. [26] Hakki Can Karaimer and Michael S Brown. Improving color reproduction accuracy on cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6440–6449, 2018. [27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [28] Furkan Kınlı, Doğa Yılmaz, Barış Özcan, and Furkan Kıraç. Modeling the lighting in scenes as style for auto white-balance correction. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023. [29] Chunxiao Li, Xuejing Kang, and Anlong Ming. Wbflow: Few-shot white balance 62 for srgb images via reversible neural flows. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, pages 1026–1034, 2023. [30] Chunxiao Li, Xuejing Kang, Zhifeng Zhang, and Anlong Ming. Swbnet: a stable white balance network for srgb images. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023. [31] Yi-Chen Lo, Chia-Che Chang, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang, and Kevin Jou. Clcc: Contrastive learning for color constancy. In CVPR, 2021. [32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. [33] Gaurav Sharma, Wencheng Wu, and Edul N Dalal. The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 2005. [34] Wu Shi, Chen Change Loy, and Xiaoou Tang. Deep specialized network for illuminant estimation. In ECCV, 2016. [35] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. [36] Joost Van De Weijer, Theo Gevers, and Arjan Gijsenij. Edge-based color constancy. IEEE TIP, 2007. 63 [37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 2017. [38] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general u-shaped transformer for image restoration. In CVPR, 2022. [39] 陳彥蓉. 基於深度直方圖網路之水下影像還原模型. 碩士論文, 國立政治大學, 臺灣, 2022. 臺灣博碩士論文知識加值系統. zh_TW