學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 微博留言的情緒在政策滿意度的中介下對女性婚育態度極化之影響 ——以名人離婚議題下的恐婚恐育現象為例
The impact of the emotion of Weibo messages on the polarization of women’s attitudes toward marriage and childbearing mediated by policy satisfaction: A case study of the fear of marriage and childbearing under the issue of celebrity divorce
作者 朱麗微
Zhu, Liwei
貢獻者 朱灼文
Chu, Cho-Wen
朱麗微
Zhu, Liwei
關鍵詞 婚姻態度
生育態度
態度極化
情緒喚醒度
傳播力
三孩政策
政策滿意度
Attitude toward marriage
Attitude toward childbearing
Attitude polarization
Emotional arousal
Emotional valence
Spreadability
Three-Child policy
Policy satisfaction
日期 2024
上傳時間 4-九月-2024 15:04:15 (UTC+8)
摘要 當少子女化已成為世界多國的難題之際,本研究從中國大陸頒布「三孩政策」引發負面輿論的背景出發,以中國大陸適婚年齡女性網友為對象,探究在婚育尚未脫鉤且日漸泛娛樂化的社會氛圍下,名人離婚議題的新浪微博留言如何透過其中的情緒喚醒度與情緒效價來影響這些網友婚、育態度的極化及社群傳播力,並驗證在上述影響過程之中,該群體對「三孩政策」及其配套措施的滿意度是否具有中介作用。本研究以社群媒體的態度極化以及情緒相關理論為基礎,採用線上調查實驗法,以王力宏離婚事件中引起矚目的李靚蕾「萬字控訴長文」微博及其留言為實驗素材,透過2(喚醒度:高 vs. 低)×2(效價:正 vs. 負)的實驗設計,分析了201個有效樣本。結果發現,留言的情緒喚醒度與婚姻態度極化呈正相關,且政策滿意度在其間發揮中介效果;留言的情緒效價與傳播力呈負相關,政策滿意度也在其間發揮中介效果。可見提高政策滿意度對於促進婚姻態度的和諧、緩解過激言論的散布具有積極意義。本研究也發現,大陸民眾的政治參與可能會透過討論看似與政治無關的娛樂新聞來實現。
With sub-replacement fertility becoming a pressing challenge in many countries, this study starts from the background of the negative public opinion triggered by the promulgation of the "three-child policy" in mainland China, also in the social atmosphere in which marriage and childbearing are still closely linked and pan-entertainment is on the rise. It takes female netizens of marriageable age in mainland China as the target group to investigate how the degree of emotional arousal and emotional valence of the Sina Weibo comments on celebrity divorces can affect the polarization of their attitudes towards marriage and childbearing as well as the spreadability of comments, and verifies whether the group's satisfaction with the "three-child policy" and its supportive measures has a mediating role in the above influence process. Based on the theories related to attitude polarization on social media and affective science, the study uses a two-factor experimental design (Arousal: High vs. Low × Valence: Positive vs. Negative). This online survey experiment collected 201 valid samples using a Weibo post by which Li Jinglei condemned a famous singer, Wang Leehom, who was divorcing her and its comments as experimental materials. The results indicate a positive correlation between emotional arousal in comments and the polarization of the attitudes toward marriage, with policy satisfaction acting as a mediating factor. Additionally, emotional valence in comments was negatively correlated with the spreadability of comments, also mediated by policy satisfaction. The findings suggest that increasing policy satisfaction can promote harmonious marriage attitudes and mitigate the dissemination of extreme comments. The study also reveals that the political engagement of ordinary people in mainland China may occur through the discussions of seemingly apolitical entertainment news.
參考文獻 丁煌(2003)。〈淺談政策有效執行的信任基礎〉。《理論探討》,5,91–93。 中央通訊社(2018年1月19日)。〈全面二孩失靈 中國大陸出生人口下降 | 兩岸〉,《中央社 CNA》。https://www.cna.com.tw/news/acn/201801190082.aspx 中央通訊社(2018年9月12日)。〈育兒假480天 瑞典踴躍增產報國 | 全球中央〉。《中央社 CNA》。https://www.cna.com.tw/topic/newsworld/116/201809120005.aspx 中央通訊社(2021年1月13日)。〈人口負成長2/瑞典福利社會氛圍支持 歐洲生育率前段班 | 國際〉,《中央社 CNA》。https://www.cna.com.tw/news/aopl/202101130058.aspx 中央通訊社(2024年7月21日)。〈泉州擬號召黨員幹部生三孩 引發變相強制生育擔憂| 兩岸〉,《中央社 CNA》。 王志剛、邱長波、崔晶、白志鵬(2020)。〈以主題為基礎的微博情緒與傳播力關係研究 ——以「中美貿易戰」為例〉,《情報科學》,38(12),158–162。 內政部委託研究小組(2014)。〈青年婚育態度與未來政策規劃研究〉。《內政部委託研究報告》。 王俊(2018年1月18日)。〈全國多地相繼出台「催生」二孩政策:發分娩、奶粉等補貼_中國政庫〉,《澎湃新聞The Paper》。https://www.thepaper.cn/newsDetail_forward_2268678 王悠然(2022年11月12日)。〈經濟因素影響生育選擇〉,《中國社會科學報》,003。 王敏、楊欣、沈雨欣、胡雲暉(2023)。〈開放三孩政策下城市育齡群體生育意願的實證分析-以成都市溫江區為例〉,《內江科技》,44(9),126–127+143。 王斌(2014)。〈「按讚」:青年網路互動新方式的社會學解讀〉,《中國青年研究》,7,20–24。 王聰聰(2008)。離婚率增高與「恐婚族」。不知不識網。http://www.buzhibushi.com/info/wkqcaLuTgFw= 民報Taiwan People News(2021年6月)。〈【那一年的這一天】1968年5月2日政院通過《台灣地區家庭計劃實施辦法》 正式推動家庭計劃〉,《民報Taiwan People News》。取自 https://web.archive.org/web/20211006205436/https://www.peoplenews.tw/news/0ef62ef9-40ea-4850-9944-232188fc4413 任莉穎(2018)。《用問卷做實驗: 調查-實驗法的概論與操作》。重慶大學出版社。 安彳弋、天雪(2022年11月25日)。〈小端網路觀察: 汪小菲大S離婚協議糾紛,兩岸網友都在討論什麼?〉。《端傳媒 Initium Media》。 https://theinitium.com/article/20221125-internet-taiwan-china-barbie-hsu-wang-xiaofei-divorce-agreement 朱思樺(2012)。《臺灣未婚女性結婚意願之探究-「不婚」還是「想婚而不得婚」?》。東吳大學社會學系碩士班學位論文,1-79。 朱博文、許偉(2019)。〈大數據時代情緒對社群媒體訊息傳播影響的研究進展〉,《國外社會科學》,4,133–140。 吳來信(2014)。〈兩個工作與家庭平衡典範國家-法國與瑞典的家庭政策比較〉,《社會科學學報》,21,1–32。 吳要武、劉倩(2015)。〈高校擴招對婚姻市場的影響:剩女?剩男?〉,《經濟學(季刊)》,14(1),5–30。 李閏華(1993)。〈父母婚姻關係對子女婚姻態度影響之研究:以臺中市未婚在學學生為對象〉[未出版之碩士論文]。東海大學社會工作學系碩士論文。 https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22081THU00201008%22.&searchmode=basic 李蕾蕾(2021)。〈都市現代性的性別地理-女性主義地理學的史前史與未來方向〉,《人文地理學》,36(4),44-52。DOI: 10.13959/j.issn.1003-2398.2021.04.006 易富賢(2009)。〈獨生子女政策與中國發展模式的困局〉,《二十一世紀》,112,74–83。 姚建平、張凌子(2022)。〈城市常住人口生育意願及影響因素分析〉,《華北電力大學學報(社會科學版)》,2,49–58。 施慧中/編譯(2019年4月9日)。〈法國育兒政策佳生育率居歐洲先進國家之冠〉,《公視新聞網PNN》。https://news.pts.org.tw/article/428263 紅星新聞(2021年11月18日)。〈評論:王力宏離婚,輿論為何「延遲爆炸」?〉,《紅星新聞》。 https://ent.sina.cn/music/ygangtai/2021-12-18/detail-ikyakumx4920649.d.html 孫瀾(2021年6月7日)。〈三孩政策|「投票結果讓新華社尷尬」中國社會「民不聊生」?〉,《香港01》。https://www.hk01.com/%E4%B8%AD%E5%9C%8B%E8%A7%80%E5%AF%9F/635069/%E4%B8%89%E5%AD%A9%E6%94%BF%E7%AD%96-%E6%8A%95%E7%A5%A8%E7%B5%90%E6%9E%9C%E8%AE%93%E6%96%B0%E8%8F%AF%E7%A4%BE%E5%B0%B7%E5%B0%AC-%E4%B8%AD%E5%9C%8B%E7%A4%BE%E6%9C%83-%E6%B0%91%E4%B8%8D%E8%81%8A%E7%94%9F 徐婉寧/編譯(2022年2月24日)。〈日本戰後「優生法」迫絕育裁決國賠每人1300萬日圓〉,《公視新聞網PNN》。https://news.pts.org.tw/article/568938 徐琳宏、林鴻飛、潘宇、任惠、陳建美(2008)。〈情緒詞彙本體的構造〉,《情報學報》,27(2),180–185。 殷豪、蕭丹(2023)。〈我國育齡女性生育決策問題探究-基於演化博弈視角〉,《西部學刊》,15,155-160+167。 翁茜、李棟(2020)。〈線上實地實驗研究進展〉,《經濟學動態》,5,132–145。 袁詠蓁、孔祥明(2022)。〈結婚不結婚:臺灣適婚年齡者進入婚姻與否的考量因素〉,《人口學刊》,64,1–49。doi: 10.6191/JPS.202206_(64).0001。 高榮(2020年11月7日)。〈生育想像:新浪微博「恐育」情緒話語研究〉。「北京論壇‧健康傳播分論壇丨醫療、人文、媒介-「健康中國」與健康傳播2020國際學術研討會」,中國北京。http://110.185.172.89:8777/KCMS/detail/detail.aspx?filename=XWCB202011001002&dbcode=IPFD&dbname=IPFD2020 張瑞真(2001)。《國小未婚教師性別角色、成就動機與婚姻態度之研究》[未出版之碩士論文]。 國立嘉義大學家庭教育研究所。https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=% 22089NCYU0658009%22.&searchmode=basic 張興華(2022)。〈關於進一步改善和落實積極生育支持措施的指導意見_國務院部門文件〉,《中國政府網》。https://www.gov.cn/zhengce/zhengceku/2022-08/16/content_5705882。htm 張翼(2019)。〈新中國成立70年來中國人口變遷及未來政策改革〉,《中國特色社會主義研究》,1(4),18–30。 張麗芬、孫淇庭(2015)。〈政策支持對大學畢業生就業的影響-基於2010-2014屆大學畢業生的實證研究〉,《探索》,5,140–145。 張艷豐、李賀(2016)。〈負面評論挖掘的網路口碑危機預警模糊推理〉,《圖書情報工作》,60(9),75。https://doi.org/10.13266/j.issn.0252- 3116.2016.09.011 梁曉敏、徐健(2018)。〈輿情事件中評論對象的情感分析及其關係網路研究〉,《情報科學》,36(2),37–42。 盛明科、楊玉蘭(2013)。〈微博時代公共輿論暴力的產生及其治理機制研究〉,《吉首大學學報(社會科學版)》,34(3),73。https://doi.org/10.3969/ j.issn.1007-4074.2013.03.012 許仁碩(2018年1月2日)。〈子宮是國家的:富國強兵,日本強制絕育的悲歌〉,《聯合新聞網》,轉角國際 udn Global。https://global.udn.com/global_vision/story/8664/2907178 郭祐誠、林佳慧(2012)。〈勞動市場條件對結婚率下降之影響〉,《人口學刊》,44,87-124。doi: 10.6191/jps.2012.3 郭梓鑫、朱水成、毛芳婷(2023)。〈「開放三孩」政策下居民生育意願及政策影響因〉,《經濟研究導刊》,18,129–134。 陳乃綺(2012年8月)。〈臺北地區未婚男女愛情風格與婚姻態度之相關研究〉。台東大學進修部暑期諮商心理碩士專班論文。http://paperupload.nttu.edu.tw/paper-2546.html 陳明輝、張昀徽(2021)。〈中國大陸「躺平主義」的興起與影響分析〉,《展望與探索月刊》,19,9,117-125。 陳桂蘭(2022年3月7日)。〈迎戰少子化日本政策從催生轉為全面支持家庭〉,《親子天下》。https://www.parenting.com.tw/article/5092184 陳筠(2023)。〈不婚不育陣線成為當今中國女權運動前沿?〉,《美國之音》。https://www.voacantonese.com/a/anti-marriage-and-infertility-front-has-become-the-theme-of-chinese-feminist-movement-20231107/7345655.html 陳燕珩、劉瑞菁(2023年3月29日)。〈「台灣拚命推生育福利,年輕人卻連婚都結不了」揭開催生政策20年失靈真相:日本如何補破網?〉。《今週刊》。https://www.businesstoday.com.tw/article/category/183027/post/202303290002/ 陳靜君、陶振超(2018)。〈偏見同化效果:網路新聞不文明留言對態度極化的影響〉,《中華傳播學刊》,33。https://doi.org/10.6195/cjcr.201806_33.0004 湯嫣(2020年8月12日)。〈《三十而已》:在困境中成長〉,《光明日報》,15。 馮觀富(2005)。《情緒心理學》(初版)。心理學出版社。 搜狐新聞(2016年10月18日)。〈王寶強離婚事件微博累計閱讀量超114億,每天1.5億〉,《搜狐新聞》。https://www.sohu.com/a/116481582_114751#google_vignette 楊穎(2022)。〈社群媒體輿資訊資訊熱度與情感強度對傳播意願的影響-情緒與知覺可信度的雙重中介機制〉,《心理學進展》,12(07),2424–2432。doi.org/10.12677/AP.2022.127289 葉至誠(2009)。《社會政策與社會立法》。獨立作家-秀威出版。 董媛媛、汪悅晨(2022)。〈《網路跟帖評論服務管理規定》新變化〉,《天馳君泰事務所》。取自:https://www.tiantailaw.com/CN/12371-32734.aspx 詹宏傑(2023,6月2日)。〈日本出生率創新低 加劇人口問題〉,《Rti 中央廣播電臺》。https://www.rti.org.tw/news/view/id/2169650 鄒文雪(2018)。〈新浪微博中新聞傳播效果評估的創新研究-基於測量指標與操作方法的可行性討論—傳媒—〉,《人民網》。http://media.people.com.cn/n1/2018 /0124/c416770-29783980.html 端傳媒(2023年8月31日)。〈「讓女人生韭菜,然後全社會割韭菜」,中國生育獎勵政策為何沒用?〉,《端傳媒 Initium Media》。https://theinitium.com/article/20230831-mainland-childbirth-incentives 趙丹(2014)。〈縣域義務教育均衡發展:公眾滿意度評估及問題透視-基於西北五縣的實證調查〉,《華中師範大學學報:人文社會科學版》,53(4),147–154。 趙盈瑾(2023)。〈婦女雙重角色視角下的社會和家庭權益保障〉,《山東女子學院報》, 1,118-128。 劉正山(2013)。〈民眾對地方政府施政策滿意度意度影響成因之研究〉,《行政院研究發展考核委員會》 劉娟、宋亭亭(2022)。〈「被渲染的焦慮」:社交媒體使用與女性生育風險感知〉,《心理學報》,34(6),45-57。 劉培文(2022)。〈房價上漲對中國城市人口生育意願的影響問題研究〉,《西安財經大學學報》,35(4),118–128。 劉詣、湯國英(2019)。〈生產、維持與崩塌:明星人設的三重邏輯〉,《中國青年研究》,12,80-86。 劉叢、謝耘耕、萬旋傲(2015)。〈微博情緒與微博傳播力的關係研究-基於24起公共事件相關微博的實證分析〉,《新聞與傳播研究》,22(9),92-106+128。 歐敬洛(2023年6月13日)。〈日本公佈「異次元級少子化對策」拼生育大幅增加生育及家庭支持〉,《香港01》。https://www.hk01.com/即時國際/908475/日本公佈-異次元級少子化對策-拼生育-大幅增加生育及家庭支援 蔡立輝、楊欣翥(2015)。〈大數據在社會輿情監測與決策制定中的應用研究〉,《行政論壇》,22(2),1–10。 蔣振、高雅罕、靳樂山(2023)。〈牧戶的草原生態補償政策滿意度與支持度-基於CSI框架和SEM的檢驗〉,《生態經濟》,1,1–13。 衛生福利部國民健康署(2021年6月30日)。〈擴大不孕症治療(試管嬰兒)補助7月1日正式上路〉,《婦幼健康組,衛生福利部國民健康署》。https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4306&pid=14287 鄭建君(2013)。〈政治信任、社會公正與政治參與的關係-一項基於625名中國被試的實證分析〉,《政治學研究》,6,61–74。 鄭津珠(2011)。〈大學生生育知識、態度及行為意圖調查研究—以北部某大學為例〉,《臺灣師範大學健康促進與衛生教育學系在職進修碩士班學位論文》,2011,1–119。 魯皓平(2023年1月10日)。〈台灣新生兒史上最低!全球最少子化的5個國家,為什麼年輕人不生小孩?〉,《遠見雜誌 - 前進的動力》。https://www.gvm.com.tw/article/98605 盧智增、高翔(2021)。〈社群媒體平台群體極化的形成機制與引導策略研究〉,《情報理論與實踐》,44(8),51–58。 融文(2023年3月23日)。〈融文2023年中國數字化營銷洞察報告〉,《知乎專欄》。https://zhuanlan.zhihu.com/p/616624985 羅超元(2022年11月12日)。〈基於EEG的戰場適應性模擬訓練情緒分析方法〉。《科學技術》,30(11),79-85。 顧以謙、劉邦揚(2018)。〈檢察機關網路聲量與情緒分析-大數據分析〉,《刑事政策與犯罪防治研究專刊》,19,22–36。 龔艷萍、馬艷玲(2017)。〈不同情緒對網路群體極化影響的實證研究-基於VAR模型〉,《商業經濟研究》,24,39–41。 BBC(2021年1月1日)。〈生育率「全球墊底」 台灣力推優惠 「勸生」為什麼這麼難?〉,《BBC News 中文》。https://www.bbc.com/zhongwen/trad/57638398 中國互聯網絡信息中心(2022年3月19日)。《2022年第49次中国互联网络发展状况统计报告》。中國互聯網絡信息中心CNNIC。https://finance.sina.cn/tech/2022-03-19/detail-imcwiwss6875143.d.html 中央研究院(2022年3月29日)。《想婚或不婚?「家庭動態調查」中的未婚者圖像》。中央研究院CSR。https://survey.sinica.edu.tw/?p=12058&lang=zh The Conversation(2023年7月14日)。〈生育率之低冠絕全球 韓國經濟不樂見的「兆頭」〉,《香港01》。https://www.hk01.com/世界專題/915332/生育率之低冠絕全球-韓國經濟不樂見的-兆頭 Tong, B.(2023年4月25日)。〈南韓少子化:全球生育率最低的國家是怎樣煉成的?〉,《CUP媒體》。https://www.cup.com.hk/2023/04/26/korea-fertility-rate-education-reform/ 株式会社ガイアックス. (2023, March). エンゲージメント率の定義とは?Facebook、X(Twitter)、Instagram、計算方法と違いをSNS別に徹底解説. ガイアックス SNSマーケティング支援サービス. https://gaiax-socialmedialab.jp/twitter/406 Agarwal, A., Biadsy, F., & McKeown, K. (2009). Contextual phrase-level polarity analysis using lexical affect scoring and syntactic n-grams. Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (EACL '09), 24–32. https://doi.org/10.3115/1609067.1609069 Albarracín, D. (2021). Action and inaction in a social world: Predicting and changing attitudes and behavior. Cambridge University Press. https://doi.org/10.1017/9781108878357 Alrumaih, A., Al-Sabbagh, A., Alsabah, R., Kharrufa, H., & Baldwin, J. (2020). Sentiment analysis of comments in social media. International Journal of Electrical and Computer Engineering (IJECE), 10(6), 5917–5922. https://doi.org/10.11591/ijece.v10i6.pp5917-5922 Avery, R., Goldscheider, F., & Speare, A. (1992). Feathered nest/gilded cage: Parental income and leaving home in the transition to adulthood. Demography, 29(3), 375–388. https://doi.org/10.2307/2061824 Axinn, W. G., & Thornton, A. (2000). The transformation in the meaning of marriage. In L. J. Waite, C. Bachrach, M. J. Hindin, E. Thomson, & A. Thornton (Eds.), The ties that bind: Perspectives on marriage and cohabitation (pp. 147–165). Aldine de Gruyter. Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497–529. https://doi.org/10.1037/0033-2909.117.3.497 Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is stronger than good. Review of General Psychology, 5(4), 323–370. https://doi.org/10.1037/1089-2680.5.4.323 Becker, G. S. (1993). A treatise on the family: Enlarged edition. Harvard University Press. Berger, J. (2011). Arousal increases social transmission of information. Psychological Science, 22(7), 891–893. https://doi.org/10.1177/0956797611413294 Berger, J., & Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research. https://doi.org/10.1509/jmr.10.0353 Blossfeld, H.-P. (1995). Changes in the process of family formation and women’s growing economic independence: A comparison of nine countries. In H.-P. Blossfeld (Ed.), The new role of women: Family formation in modern societies (pp. 3–32). Westview Press. Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. Technical Report C-1. The Center for Research in Psychophysiology, University of Florida. Buder, J., Rabl, L., Feiks, M., Badermann, M., & Zurstiege, G. (2021). Does negatively toned language use on social media lead to attitude polarization? Computers in Human Behavior, 116, 106663. https://doi.org/10.1016/j.chb.2020.106663 Buurma, H. (2001). Public policy marketing: Marketing exchange in the public sector. European Journal of Marketing, 35(11/12), 1287–1302. https://doi.org/10.1108/EUM0000000006483 Cheng, Y.-Y., Chen, Y.-M., Yeh, W.-C., & Chang, Y.-C. (2021). Valence and arousal-infused bi-directional LSTM for sentiment analysis of government social media management. Applied Sciences, 11(2), 880. https://doi.org/10.3390/app11020880 Cheong, H. J., Baksh, S. M., & Ju, I. (2022). Spiral of silence in an algorithm-driven social media content environment: Conceptual framework and research propositions. KOME, 10(1), 32–46. https://doi.org/10.17646/KOME.75672.86 Cherlin, A. J. (2004). The deinstitutionalization of American marriage. Journal of Marriage and Family, 66(4), 848–861. https://doi.org/10.1111/j.0022-2445.2004.00058.x Choe, M., & Tsuya, N. O. (2009). The institutional context of low fertility: The case of Japan. Asian Population Studies, 5(3), 215–235. https://doi.org/10.1080/17441730903351479 Coleman, S. (1983). Family planning in Japanese society: Traditional birth control in a modern urban culture. Princeton University Press. Côté, I. M., & Darling, E. S. (2018). Scientists on Twitter: Preaching to the choir or singing from the rooftops? FACETS, 3(1), 682–694. https://doi.org/10.1139/facets-2018-0002 Dahlgren, P. M. (2020). Media echo chambers: Selective exposure and confirmation bias in media use, and its consequences for political polarization. University of Gothenburg. https://gupea.ub.gu.se/handle/2077/67023 Darley, J. M., & Gross, P. H. (1983). A hypothesis-confirming bias in labeling effects. Journal of Personality and Social Psychology, 44(1), 20–33. https://doi.org/10.1037/0022-3514.44.1.20 Diaz Ruiz, C., & Nilsson, T. (2023). Disinformation and echo chambers: How disinformation circulates on social media through identity-driven controversies. Journal of Public Policy & Marketing, 42(1), 18–35. https://doi.org/10.1177/07439156221103852 Duflo, E., Glennerster, R., & Kremer, M. (2006). Using randomization in development economics research: A toolkit. In Handbook of Development Economics (Vol. 4, pp. 3895–3962). Elsevier. https://doi.org/10.1016/S1573-4471(07)04061-2 Dursun, İ., & Tümer Kabadayi, E. (2013). Resistance to persuasion in an anti-consumption context: Biased assimilation of positive product information: Biased assimilation in anti-consumption context. Journal of Consumer Behaviour, 12(2), 93–101. https://doi.org/10.1002/cb.1422 Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook “friends”: Social capital and college students’ use of online social network sites. Journal of Computer-Mediated Communication, 12(4), 1143–1168. https://doi.org/10.1111/j.1083-6101.2007.00367.x Fan, R., Zhao, J., Chen, Y., & Xu, K. (2014). Anger is more influential than joy: Sentiment correlation in Weibo. PLOS ONE, 9(10), e110184. https://doi.org/10.1371/journal.pone.0110184 Glick, J. E., Ruf, S. D., White, M. J., & Goldscheider, F. (2006). Educational engagement and early family formation: Differences by ethnicity and generation. Social Forces, 84(3), 1391–1415. Goldenberg, A., & Gross, J. J. (2020). Digital emotion contagion. Trends in Cognitive Sciences, 24(4), 316–328. https://doi.org/10.1016/j.tics.2020.01.009 Guterbock, T. M. (2010). The future of the academic survey research organization. Survey Research, 1, 4–9. He, Y., Tom Abdul Wahab, N., Muhamad, H., & Liu, D. (2024). The marital and fertility sentiment orientation of Chinese women and its influencing factors: An analysis based on natural language processing. PLOS ONE, 19(2), e0296910. https://doi.org/10.1371/journal.pone.0296910 Iyengar, S., & Hahn, K. S. (2009). Red media, blue media: Evidence of ideological selectivity in media use. Journal of Communication, 59(1), 19–39. https://doi.org/10.1111/j.1460-2466.2008.01402.x Jackson, M., & Cox, D. R. (2013). The principles of experimental design and their application in sociology. Annual Review of Sociology, 39(1), 27–49. https://doi.org/10.1146/annurev-soc-071811-145443 Kim, S.-M., & Hovy, E. (2004). Determining the sentiment of opinions. Proceedings of the 20th International Conference on Computational Linguistics (COLING '04). https://doi.org/10.3115/1220355.1220555 Kiss, Á., & Simonovits, G. (2014). Identifying the bandwagon effect in two-round elections. Public Choice, 160(3), 327–344. https://doi.org/10.1007/s11127-013-0146-y Knobloch-Westerwick, S. (2014). Choice and preference in media use: Advances in selective exposure theory and research. Routledge. Kuang, W. (2018a). Empirical studies on new-media public opinion. In W. Kuang (Ed.), Social media in China (pp. 257–261). Springer. https://doi.org/10.1007/978-981-13-0914-4_10 Kuang, W. (2018b). New-media public opinion becomes mainstream social opinion. In W. Kuang (Ed.), Social media in China (pp. 25–38). Springer. https://doi.org/10.1007/978-981-13-0914-4_2 Lee, L.-H., Li, J.-H., & Yu, L.-C. (2022). Chinese EmoBank: Building valence-arousal resources for dimensional sentiment analysis. ACM Transactions on Asian and Low-Resource Language Information Processing, 21(4), Article 51. https://doi.org/10.1145/3489141 Lee, R. M., Draper, M., & Lee, S. (2001). Social connectedness, dysfunctional interpersonal behaviors, and psychological distress: Testing a mediator model. Journal of Counseling Psychology, 48(3), 310–318. https://doi.org/10.1037/0022-0167.48.3.310 Lerner, J. S., & Keltner, D. (2001). Fear, anger, and risk. Journal of Personality and Social Psychology, 81(1), 146–159. https://doi.org/10.1037/0022-3514.81.1.146 Likes vs. Comments vs. Shares. (2020, January 14). The White Label Creative. https://thewhitelabelcreative.com/likes-vs-comments-vs-shares/ Liu, X., & Fahmy, S. (2011). Exploring the spiral of silence in the virtual world: Individuals’ willingness to express personal opinions in online versus offline settings. Journal of Media and Communication Studies, 3(2), 45–57. Lord, C., Ross, L., & Lepper, M. (1979). Biased assimilation and attitude polarization: The effects of prior theories on subsequently considered evidence. Journal of Personality and Social Psychology, 37(11), 2098–2109. https://doi.org/10.1037/0022-3514.37.11.2098 Maupomé, G., & Isyutina, O. (2013). Dental students’ and faculty members’ concepts and emotions associated with a caries risk assessment program. Journal of Dental Education, 77(11), 1477–1487. https://doi.org/10.1002/j.0022-0337.2013.77.11.tb05624.x McDonald, P. (2013). Societal foundations for explaining low fertility: Gender equity. Demographic Research, 28, 981–994. https://doi.org/10.4054/DemRes.2013.28.34 Miettinen, A., Basten, S., & Rotkirch, A. (2011). Gender equality and fertility intentions revisited: Evidence from Finland. Demographic Research, 24, 469–496. https://doi.org/10.4054/DemRes.2011.24.20 Mills, M. (2010). Gender roles, gender (in)equality and fertility: An empirical test of five gender equity indices. Canadian Studies in Population, 37(3–4), 445–474. https://doi.org/10.25336/P6131Q Mutz, D. C. (2011). Population-based survey experiments. Princeton University Press. https://doi.org/10.1515/9781400840489 Myers, D. G., & Lamm, H. (1976). The group polarization phenomenon. Psychological Bulletin, 83(4), 602–627. https://doi.org/10.1037/0033-2909.83.4.602 Myrskylä, M., Billari, F., & Kohler, H.-P. (2011). High development and fertility: Fertility at older reproductive ages and gender equality explain the positive link. Science, 331(6017), 220–223. https://doi.org/10.1126/science.1199405 Nadelson, C. C., & Notman, M. T. (1981). To marry or not to marry: A choice. The American Journal of Psychiatry, 138(10), 1352–1356. https://doi.org/10.1176/ajp.138.10.1352 Nagarajan, M., Purohit, H., & Sheth, A. (2010). A qualitative examination of topical tweet and retweet practices. Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media. Nelson-Field, K., Riebe, E., & Newstead, K. (2013). The emotions that drive viral video. Australasian Marketing Journal, 21(4), 205–211. https://doi.org/10.1016/j.ausmj.2013.07.003 Nguyen, C. T. (2020). Echo chambers and epistemic bubbles. Episteme, 17(2), 141–161. https://doi.org/10.1017/epi.2018.32 Omoera, O., & Guanah, J. (2022). Interactive nature of social media’s comment feature: An analysis of commenters’ comments during the #EndSARS protests in Nigeria. Interactive Film & Media Journal, 2(2), Article 2. https://doi.org/10.32920/ifmj.v2i2.1584 Panksepp, J. (2010). Affective neuroscience of the emotional brain: Evolutionary perspectives and implications for understanding depression. Dialogues in Clinical Neuroscience, 12(4), 533–545. Petrauskas, A. (2021). Plutchik’s wheel and the unity of opposites. The Journal of Mind and Behavior, 38(1), 17–30. Petrovic, S., Osborne, M., & Lavrenko, V. (2011). RT to win! Predicting message propagation in Twitter. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 586–589. https://doi.org/10.1609/icwsm.v5i1.14149 Pison, G. (2012). France and Germany: A history of criss-crossing demographic curves. Population & Societies, 487(3), 1–4. Plutchik, R. (1984). Emotions and imagery. Journal of Mental Imagery, 8(4), 105–111. Posner, J., Russell, J. A., & Peterson, B. S. (2005). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17(3), 715–734. https://doi.org/10.1017/S0954579405050340 Qian, H. (2022). Review of comment sentiment analysis based on emoticons: 2021 International Conference on Public Art and Human Development (ICPAHD 2021), Kunming, China. https://doi.org/10.2991/assehr.k.220110.109 Quattrociocchi, W., & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9), e2023301118. https://doi.org/10.1073/pnas.2023301118 Raymo, J. M., Park, H., Xie, Y., & Yeung, W. (2015). Marriage and family in East Asia: Continuity and change. Annual Review of Sociology, 41(1), 471–492. https://doi.org/10.1146/annurev-soc-073014-112428 Razavi, P., Zhang, J., Hekiert, D., Yoo, S., & Howell, R. (2016). Cross-cultural similarities and differences in the experience of awe. Emotion, 16(8), 1186–1192. https://doi.org/10.1037/emo0000225 Reeve, J. (2018). Understanding motivation and emotion. Wiley. Rosen, L. (2012, July 6). The power of “like.” Psychology Today. https://www.psychologytoday.com/intl/blog/rewired-the-psychology-technology/201207/the-power Russell, J. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714 Ryzin, G. V. (2004). Drivers and consequences of citizen satisfaction: An application of the American customer satisfaction index model to New York City. Public Administration Review, 64(3), 331–341. https://www.academia.edu/2220162/Drivers_and_consequences_of_citizen_satisfaction_An_application_of_the_American_customer_satisfaction_index_model_to_New_York_City Sakode, H., Surekha, T. L., Sri, M. D., & Kumar, G. B. (2023). Sentiment analysis using text and emojis. 2023 International Conference on Inventive Computation Technologies (ICICT), 627–634. https://doi.org/10.1109/ICICT57646.2023.10134459 Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69(5), 379–399. https://doi.org/10.1037/h0046234 Schaeffer, N. C., & Presser, S. (2003). The science of asking questions. Annual Review of Sociology, 29(1), 65–88. https://doi.org/10.1146/annurev.soc.29.110702.110112 Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4), 695–729. https://doi.org/10.1177/0539018405058216 Schiffman, L. G., & Kanuk, L. L. (1991). Consumer behavior (4th ed.). Prentice Hall. Schmitt-Beck, R. (2015). Bandwagon effect. In The international encyclopedia of political communication (pp. 1–5). John Wiley & Sons. https://doi.org/10.1002/9781118541555.wbiepc015 Smith, L., Blackwood, L., & Thomas, E. (2019). The need to refocus on the group as the site of radicalization. Perspectives on Psychological Science, 15, 174569161988587. https://doi.org/10.1177/1745691619885870 Snijders, R., & Helms, R. (2014). Analyzing social influence through social media: A structured literature review. In Proceedings of the 7th IADIS International Conference Information Systems 2014 (pp. 3–10). Staff, N. (2017, September 11). Psychologists identify twenty-seven distinct categories of emotion. Sci-News.com. https://www.sci-news.com/psychology/27-categories-emotion-05269.html Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29(4), 217–248. https://doi.org/10.2753/MIS0742-1222290408 Stoner, J. A. F. (1961). A comparison of individual and group decisions involving risk [Thesis, Massachusetts Institute of Technology]. https://dspace.mit.edu/handle/1721.1/11330 Sunstein, C. R. (n.d.). The law of group polarization. The University of Chicago Law School John M. Olin Law & Economics Working Paper, 91. Tajfel, H., & Turner, J. (2001). An integrative theory of intergroup conflict. In Intergroup relations: Essential readings (pp. 94–109). Psychology Press. Tashmin, N. (2016). Art of impression management on social media. Proceedings of the 7th International Conference on Social Media and Society, 100–107. Țarcă, V., Țarcă, E., & Luca, F. (2022). The impact of the main negative socio-economic factors on female fertility. Healthcare, 10(4), 734. https://doi.org/10.3390/healthcare10040734 Valenzuela, S., Park, N., & Kee, K. F. (2009). Is there social capital in a social network site?: Facebook use and college students’ life satisfaction, trust, and participation. Journal of Computer-Mediated Communication, 14(4), 875–901. https://doi.org/10.1111/j.1083-6101.2009.01474.x Valkenburg, P. M., Peter, J., & Schouten, A. P. (2006). Friend networking sites and their relationship to adolescents’ well-being and social self-esteem. CyberPsychology & Behavior, 9(5), 584–590. https://doi.org/10.1089/cpb.2006.9.584 Wang, Q., & Xu, S. (2016). The role of socio-political and economic factors in fertility decline: A cross-country analysis. World Development, 87, 360–370. https://doi.org/10.1016/j.worlddev.2016.07.004 Wanke, G. B. (2014). Attitudes and attitude change. Psychology Press. https://doi.org/10.4324/9781315784786 Worley, D. (2021). Tajfel and Turner intergroup conflict theories 1997. ResearchGate. https://doi.org/10.13140/RG.2.2.30820.60809 Yazdanifard, R., Obeidy, W., Fadzilah, W., Wan Yusoff, W. F., & Babaei, H. (2011). Social networks and microblogging; The emerging marketing trends & tools of the twenty-first century. International Journal of Academic Research in Business and Social Sciences, 5(1), 146–157. Yu, L.-C., Lee, L.-H., Hao, S., Wang, J., He, Y., Hu, J., Lai, K. R., & Zhang, X. (2016). Building Chinese affective resources in valence-arousal dimensions. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 540–545. https://doi.org/10.18653/v1/N16-1066 Zhao, J., Wu, J., & Xu, K. (2010). Weak ties: Subtle role of information diffusion in online social networks. Physical Review E, 82(1), 016105. https://doi.org/10.1103/PhysRevE.82.016105  
描述 碩士
國立政治大學
傳播學院傳播碩士學位學程
109464064
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0109464064
資料類型 thesis
dc.contributor.advisor 朱灼文zh_TW
dc.contributor.advisor Chu, Cho-Wenen_US
dc.contributor.author (作者) 朱麗微zh_TW
dc.contributor.author (作者) Zhu, Liweien_US
dc.creator (作者) 朱麗微zh_TW
dc.creator (作者) Zhu, Liweien_US
dc.date (日期) 2024en_US
dc.date.accessioned 4-九月-2024 15:04:15 (UTC+8)-
dc.date.available 4-九月-2024 15:04:15 (UTC+8)-
dc.date.issued (上傳時間) 4-九月-2024 15:04:15 (UTC+8)-
dc.identifier (其他 識別碼) G0109464064en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/153401-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 傳播學院傳播碩士學位學程zh_TW
dc.description (描述) 109464064zh_TW
dc.description.abstract (摘要) 當少子女化已成為世界多國的難題之際,本研究從中國大陸頒布「三孩政策」引發負面輿論的背景出發,以中國大陸適婚年齡女性網友為對象,探究在婚育尚未脫鉤且日漸泛娛樂化的社會氛圍下,名人離婚議題的新浪微博留言如何透過其中的情緒喚醒度與情緒效價來影響這些網友婚、育態度的極化及社群傳播力,並驗證在上述影響過程之中,該群體對「三孩政策」及其配套措施的滿意度是否具有中介作用。本研究以社群媒體的態度極化以及情緒相關理論為基礎,採用線上調查實驗法,以王力宏離婚事件中引起矚目的李靚蕾「萬字控訴長文」微博及其留言為實驗素材,透過2(喚醒度:高 vs. 低)×2(效價:正 vs. 負)的實驗設計,分析了201個有效樣本。結果發現,留言的情緒喚醒度與婚姻態度極化呈正相關,且政策滿意度在其間發揮中介效果;留言的情緒效價與傳播力呈負相關,政策滿意度也在其間發揮中介效果。可見提高政策滿意度對於促進婚姻態度的和諧、緩解過激言論的散布具有積極意義。本研究也發現,大陸民眾的政治參與可能會透過討論看似與政治無關的娛樂新聞來實現。zh_TW
dc.description.abstract (摘要) With sub-replacement fertility becoming a pressing challenge in many countries, this study starts from the background of the negative public opinion triggered by the promulgation of the "three-child policy" in mainland China, also in the social atmosphere in which marriage and childbearing are still closely linked and pan-entertainment is on the rise. It takes female netizens of marriageable age in mainland China as the target group to investigate how the degree of emotional arousal and emotional valence of the Sina Weibo comments on celebrity divorces can affect the polarization of their attitudes towards marriage and childbearing as well as the spreadability of comments, and verifies whether the group's satisfaction with the "three-child policy" and its supportive measures has a mediating role in the above influence process. Based on the theories related to attitude polarization on social media and affective science, the study uses a two-factor experimental design (Arousal: High vs. Low × Valence: Positive vs. Negative). This online survey experiment collected 201 valid samples using a Weibo post by which Li Jinglei condemned a famous singer, Wang Leehom, who was divorcing her and its comments as experimental materials. The results indicate a positive correlation between emotional arousal in comments and the polarization of the attitudes toward marriage, with policy satisfaction acting as a mediating factor. Additionally, emotional valence in comments was negatively correlated with the spreadability of comments, also mediated by policy satisfaction. The findings suggest that increasing policy satisfaction can promote harmonious marriage attitudes and mitigate the dissemination of extreme comments. The study also reveals that the political engagement of ordinary people in mainland China may occur through the discussions of seemingly apolitical entertainment news.en_US
dc.description.tableofcontents 第一章 緒論 1 第一節 研究背景與現狀 1 第二節 研究動機 6 第三節 研究目的 12 第二章 文獻探討 14 第一節 態度極化與傳播力 14 一、 極化研究的起源與極化成因 14 二、 社群媒體傳播力與態度極化 15 第二節 婚育態度與政策滿意度 19 一、 世界各地應對人口問題的政策 19 二、 婚育態度的影響因素 22 三、 政策滿意度對婚育態度和傳播力的影響 25 第三節 情緒 28 一、 情緒的構成與分析框架 28 二、 情緒對態度極化和傳播力的影響 32 第四節 研究問題 35 第三章 研究方法 38 第一節 研究架構與假設 38 第二節 線上調查實驗法及流程 40 一、 調查實驗法 40 二、 實驗素材 41 三、 實驗流程 42 第三節 樣本與變項 45 一、 研究對象和樣本量 45 二、 婚/育態度極化 46 三、 傳播力 48 四、 政策滿意度 49 第四章 研究結果 51 第一節 樣本數量與描述性統計 51 第二節 量表信、效度檢測 53 一、 信度檢測 53 二、 效度分析 54 第三節 操弄檢定 57 第四節 因素變異數分析 58 一、 前測婚育態度之單因素變異數分析 58 二、 各變項之單因素變異數分析 59 三、 雙因素變異數分析 61 第五節 假設檢驗 64 一、 研究問題一相關假設檢驗(H3~H7) 64 二、 研究問題二相關假設檢驗(H8~H12) 66 三、 研究問題三相關假設檢驗(H13~H17) 67 第六節 研究假設驗證結果整理 70 第五章 結論 71 第一節 研究發現與討論 71 一、 情緒效價與喚醒度影響政策滿意度 71 二、 政策滿意度提高對婚姻制度及社會穩定發揮積極影響 72 三、 生育態度極化程度與政策滿意度呈正相關 74 四、 婚育態度之影響因素 77 五、 政策滿意度中介效價對傳播力的影響 77 第二節 研究貢獻 79 一、 學術貢獻 71 二、 實務建議 80 第三節 研究限制與未來研究建議 81 參考文獻 84 附錄一‧留言情緒前測 98 附錄二‧正式調查實驗問卷 107zh_TW
dc.format.extent 9952289 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0109464064en_US
dc.subject (關鍵詞) 婚姻態度zh_TW
dc.subject (關鍵詞) 生育態度zh_TW
dc.subject (關鍵詞) 態度極化zh_TW
dc.subject (關鍵詞) 情緒喚醒度zh_TW
dc.subject (關鍵詞) 傳播力zh_TW
dc.subject (關鍵詞) 三孩政策zh_TW
dc.subject (關鍵詞) 政策滿意度zh_TW
dc.subject (關鍵詞) Attitude toward marriageen_US
dc.subject (關鍵詞) Attitude toward childbearingen_US
dc.subject (關鍵詞) Attitude polarizationen_US
dc.subject (關鍵詞) Emotional arousalen_US
dc.subject (關鍵詞) Emotional valenceen_US
dc.subject (關鍵詞) Spreadabilityen_US
dc.subject (關鍵詞) Three-Child policyen_US
dc.subject (關鍵詞) Policy satisfactionen_US
dc.title (題名) 微博留言的情緒在政策滿意度的中介下對女性婚育態度極化之影響 ——以名人離婚議題下的恐婚恐育現象為例zh_TW
dc.title (題名) The impact of the emotion of Weibo messages on the polarization of women’s attitudes toward marriage and childbearing mediated by policy satisfaction: A case study of the fear of marriage and childbearing under the issue of celebrity divorceen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 丁煌(2003)。〈淺談政策有效執行的信任基礎〉。《理論探討》,5,91–93。 中央通訊社(2018年1月19日)。〈全面二孩失靈 中國大陸出生人口下降 | 兩岸〉,《中央社 CNA》。https://www.cna.com.tw/news/acn/201801190082.aspx 中央通訊社(2018年9月12日)。〈育兒假480天 瑞典踴躍增產報國 | 全球中央〉。《中央社 CNA》。https://www.cna.com.tw/topic/newsworld/116/201809120005.aspx 中央通訊社(2021年1月13日)。〈人口負成長2/瑞典福利社會氛圍支持 歐洲生育率前段班 | 國際〉,《中央社 CNA》。https://www.cna.com.tw/news/aopl/202101130058.aspx 中央通訊社(2024年7月21日)。〈泉州擬號召黨員幹部生三孩 引發變相強制生育擔憂| 兩岸〉,《中央社 CNA》。 王志剛、邱長波、崔晶、白志鵬(2020)。〈以主題為基礎的微博情緒與傳播力關係研究 ——以「中美貿易戰」為例〉,《情報科學》,38(12),158–162。 內政部委託研究小組(2014)。〈青年婚育態度與未來政策規劃研究〉。《內政部委託研究報告》。 王俊(2018年1月18日)。〈全國多地相繼出台「催生」二孩政策:發分娩、奶粉等補貼_中國政庫〉,《澎湃新聞The Paper》。https://www.thepaper.cn/newsDetail_forward_2268678 王悠然(2022年11月12日)。〈經濟因素影響生育選擇〉,《中國社會科學報》,003。 王敏、楊欣、沈雨欣、胡雲暉(2023)。〈開放三孩政策下城市育齡群體生育意願的實證分析-以成都市溫江區為例〉,《內江科技》,44(9),126–127+143。 王斌(2014)。〈「按讚」:青年網路互動新方式的社會學解讀〉,《中國青年研究》,7,20–24。 王聰聰(2008)。離婚率增高與「恐婚族」。不知不識網。http://www.buzhibushi.com/info/wkqcaLuTgFw= 民報Taiwan People News(2021年6月)。〈【那一年的這一天】1968年5月2日政院通過《台灣地區家庭計劃實施辦法》 正式推動家庭計劃〉,《民報Taiwan People News》。取自 https://web.archive.org/web/20211006205436/https://www.peoplenews.tw/news/0ef62ef9-40ea-4850-9944-232188fc4413 任莉穎(2018)。《用問卷做實驗: 調查-實驗法的概論與操作》。重慶大學出版社。 安彳弋、天雪(2022年11月25日)。〈小端網路觀察: 汪小菲大S離婚協議糾紛,兩岸網友都在討論什麼?〉。《端傳媒 Initium Media》。 https://theinitium.com/article/20221125-internet-taiwan-china-barbie-hsu-wang-xiaofei-divorce-agreement 朱思樺(2012)。《臺灣未婚女性結婚意願之探究-「不婚」還是「想婚而不得婚」?》。東吳大學社會學系碩士班學位論文,1-79。 朱博文、許偉(2019)。〈大數據時代情緒對社群媒體訊息傳播影響的研究進展〉,《國外社會科學》,4,133–140。 吳來信(2014)。〈兩個工作與家庭平衡典範國家-法國與瑞典的家庭政策比較〉,《社會科學學報》,21,1–32。 吳要武、劉倩(2015)。〈高校擴招對婚姻市場的影響:剩女?剩男?〉,《經濟學(季刊)》,14(1),5–30。 李閏華(1993)。〈父母婚姻關係對子女婚姻態度影響之研究:以臺中市未婚在學學生為對象〉[未出版之碩士論文]。東海大學社會工作學系碩士論文。 https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22081THU00201008%22.&searchmode=basic 李蕾蕾(2021)。〈都市現代性的性別地理-女性主義地理學的史前史與未來方向〉,《人文地理學》,36(4),44-52。DOI: 10.13959/j.issn.1003-2398.2021.04.006 易富賢(2009)。〈獨生子女政策與中國發展模式的困局〉,《二十一世紀》,112,74–83。 姚建平、張凌子(2022)。〈城市常住人口生育意願及影響因素分析〉,《華北電力大學學報(社會科學版)》,2,49–58。 施慧中/編譯(2019年4月9日)。〈法國育兒政策佳生育率居歐洲先進國家之冠〉,《公視新聞網PNN》。https://news.pts.org.tw/article/428263 紅星新聞(2021年11月18日)。〈評論:王力宏離婚,輿論為何「延遲爆炸」?〉,《紅星新聞》。 https://ent.sina.cn/music/ygangtai/2021-12-18/detail-ikyakumx4920649.d.html 孫瀾(2021年6月7日)。〈三孩政策|「投票結果讓新華社尷尬」中國社會「民不聊生」?〉,《香港01》。https://www.hk01.com/%E4%B8%AD%E5%9C%8B%E8%A7%80%E5%AF%9F/635069/%E4%B8%89%E5%AD%A9%E6%94%BF%E7%AD%96-%E6%8A%95%E7%A5%A8%E7%B5%90%E6%9E%9C%E8%AE%93%E6%96%B0%E8%8F%AF%E7%A4%BE%E5%B0%B7%E5%B0%AC-%E4%B8%AD%E5%9C%8B%E7%A4%BE%E6%9C%83-%E6%B0%91%E4%B8%8D%E8%81%8A%E7%94%9F 徐婉寧/編譯(2022年2月24日)。〈日本戰後「優生法」迫絕育裁決國賠每人1300萬日圓〉,《公視新聞網PNN》。https://news.pts.org.tw/article/568938 徐琳宏、林鴻飛、潘宇、任惠、陳建美(2008)。〈情緒詞彙本體的構造〉,《情報學報》,27(2),180–185。 殷豪、蕭丹(2023)。〈我國育齡女性生育決策問題探究-基於演化博弈視角〉,《西部學刊》,15,155-160+167。 翁茜、李棟(2020)。〈線上實地實驗研究進展〉,《經濟學動態》,5,132–145。 袁詠蓁、孔祥明(2022)。〈結婚不結婚:臺灣適婚年齡者進入婚姻與否的考量因素〉,《人口學刊》,64,1–49。doi: 10.6191/JPS.202206_(64).0001。 高榮(2020年11月7日)。〈生育想像:新浪微博「恐育」情緒話語研究〉。「北京論壇‧健康傳播分論壇丨醫療、人文、媒介-「健康中國」與健康傳播2020國際學術研討會」,中國北京。http://110.185.172.89:8777/KCMS/detail/detail.aspx?filename=XWCB202011001002&dbcode=IPFD&dbname=IPFD2020 張瑞真(2001)。《國小未婚教師性別角色、成就動機與婚姻態度之研究》[未出版之碩士論文]。 國立嘉義大學家庭教育研究所。https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=% 22089NCYU0658009%22.&searchmode=basic 張興華(2022)。〈關於進一步改善和落實積極生育支持措施的指導意見_國務院部門文件〉,《中國政府網》。https://www.gov.cn/zhengce/zhengceku/2022-08/16/content_5705882。htm 張翼(2019)。〈新中國成立70年來中國人口變遷及未來政策改革〉,《中國特色社會主義研究》,1(4),18–30。 張麗芬、孫淇庭(2015)。〈政策支持對大學畢業生就業的影響-基於2010-2014屆大學畢業生的實證研究〉,《探索》,5,140–145。 張艷豐、李賀(2016)。〈負面評論挖掘的網路口碑危機預警模糊推理〉,《圖書情報工作》,60(9),75。https://doi.org/10.13266/j.issn.0252- 3116.2016.09.011 梁曉敏、徐健(2018)。〈輿情事件中評論對象的情感分析及其關係網路研究〉,《情報科學》,36(2),37–42。 盛明科、楊玉蘭(2013)。〈微博時代公共輿論暴力的產生及其治理機制研究〉,《吉首大學學報(社會科學版)》,34(3),73。https://doi.org/10.3969/ j.issn.1007-4074.2013.03.012 許仁碩(2018年1月2日)。〈子宮是國家的:富國強兵,日本強制絕育的悲歌〉,《聯合新聞網》,轉角國際 udn Global。https://global.udn.com/global_vision/story/8664/2907178 郭祐誠、林佳慧(2012)。〈勞動市場條件對結婚率下降之影響〉,《人口學刊》,44,87-124。doi: 10.6191/jps.2012.3 郭梓鑫、朱水成、毛芳婷(2023)。〈「開放三孩」政策下居民生育意願及政策影響因〉,《經濟研究導刊》,18,129–134。 陳乃綺(2012年8月)。〈臺北地區未婚男女愛情風格與婚姻態度之相關研究〉。台東大學進修部暑期諮商心理碩士專班論文。http://paperupload.nttu.edu.tw/paper-2546.html 陳明輝、張昀徽(2021)。〈中國大陸「躺平主義」的興起與影響分析〉,《展望與探索月刊》,19,9,117-125。 陳桂蘭(2022年3月7日)。〈迎戰少子化日本政策從催生轉為全面支持家庭〉,《親子天下》。https://www.parenting.com.tw/article/5092184 陳筠(2023)。〈不婚不育陣線成為當今中國女權運動前沿?〉,《美國之音》。https://www.voacantonese.com/a/anti-marriage-and-infertility-front-has-become-the-theme-of-chinese-feminist-movement-20231107/7345655.html 陳燕珩、劉瑞菁(2023年3月29日)。〈「台灣拚命推生育福利,年輕人卻連婚都結不了」揭開催生政策20年失靈真相:日本如何補破網?〉。《今週刊》。https://www.businesstoday.com.tw/article/category/183027/post/202303290002/ 陳靜君、陶振超(2018)。〈偏見同化效果:網路新聞不文明留言對態度極化的影響〉,《中華傳播學刊》,33。https://doi.org/10.6195/cjcr.201806_33.0004 湯嫣(2020年8月12日)。〈《三十而已》:在困境中成長〉,《光明日報》,15。 馮觀富(2005)。《情緒心理學》(初版)。心理學出版社。 搜狐新聞(2016年10月18日)。〈王寶強離婚事件微博累計閱讀量超114億,每天1.5億〉,《搜狐新聞》。https://www.sohu.com/a/116481582_114751#google_vignette 楊穎(2022)。〈社群媒體輿資訊資訊熱度與情感強度對傳播意願的影響-情緒與知覺可信度的雙重中介機制〉,《心理學進展》,12(07),2424–2432。doi.org/10.12677/AP.2022.127289 葉至誠(2009)。《社會政策與社會立法》。獨立作家-秀威出版。 董媛媛、汪悅晨(2022)。〈《網路跟帖評論服務管理規定》新變化〉,《天馳君泰事務所》。取自:https://www.tiantailaw.com/CN/12371-32734.aspx 詹宏傑(2023,6月2日)。〈日本出生率創新低 加劇人口問題〉,《Rti 中央廣播電臺》。https://www.rti.org.tw/news/view/id/2169650 鄒文雪(2018)。〈新浪微博中新聞傳播效果評估的創新研究-基於測量指標與操作方法的可行性討論—傳媒—〉,《人民網》。http://media.people.com.cn/n1/2018 /0124/c416770-29783980.html 端傳媒(2023年8月31日)。〈「讓女人生韭菜,然後全社會割韭菜」,中國生育獎勵政策為何沒用?〉,《端傳媒 Initium Media》。https://theinitium.com/article/20230831-mainland-childbirth-incentives 趙丹(2014)。〈縣域義務教育均衡發展:公眾滿意度評估及問題透視-基於西北五縣的實證調查〉,《華中師範大學學報:人文社會科學版》,53(4),147–154。 趙盈瑾(2023)。〈婦女雙重角色視角下的社會和家庭權益保障〉,《山東女子學院報》, 1,118-128。 劉正山(2013)。〈民眾對地方政府施政策滿意度意度影響成因之研究〉,《行政院研究發展考核委員會》 劉娟、宋亭亭(2022)。〈「被渲染的焦慮」:社交媒體使用與女性生育風險感知〉,《心理學報》,34(6),45-57。 劉培文(2022)。〈房價上漲對中國城市人口生育意願的影響問題研究〉,《西安財經大學學報》,35(4),118–128。 劉詣、湯國英(2019)。〈生產、維持與崩塌:明星人設的三重邏輯〉,《中國青年研究》,12,80-86。 劉叢、謝耘耕、萬旋傲(2015)。〈微博情緒與微博傳播力的關係研究-基於24起公共事件相關微博的實證分析〉,《新聞與傳播研究》,22(9),92-106+128。 歐敬洛(2023年6月13日)。〈日本公佈「異次元級少子化對策」拼生育大幅增加生育及家庭支持〉,《香港01》。https://www.hk01.com/即時國際/908475/日本公佈-異次元級少子化對策-拼生育-大幅增加生育及家庭支援 蔡立輝、楊欣翥(2015)。〈大數據在社會輿情監測與決策制定中的應用研究〉,《行政論壇》,22(2),1–10。 蔣振、高雅罕、靳樂山(2023)。〈牧戶的草原生態補償政策滿意度與支持度-基於CSI框架和SEM的檢驗〉,《生態經濟》,1,1–13。 衛生福利部國民健康署(2021年6月30日)。〈擴大不孕症治療(試管嬰兒)補助7月1日正式上路〉,《婦幼健康組,衛生福利部國民健康署》。https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4306&pid=14287 鄭建君(2013)。〈政治信任、社會公正與政治參與的關係-一項基於625名中國被試的實證分析〉,《政治學研究》,6,61–74。 鄭津珠(2011)。〈大學生生育知識、態度及行為意圖調查研究—以北部某大學為例〉,《臺灣師範大學健康促進與衛生教育學系在職進修碩士班學位論文》,2011,1–119。 魯皓平(2023年1月10日)。〈台灣新生兒史上最低!全球最少子化的5個國家,為什麼年輕人不生小孩?〉,《遠見雜誌 - 前進的動力》。https://www.gvm.com.tw/article/98605 盧智增、高翔(2021)。〈社群媒體平台群體極化的形成機制與引導策略研究〉,《情報理論與實踐》,44(8),51–58。 融文(2023年3月23日)。〈融文2023年中國數字化營銷洞察報告〉,《知乎專欄》。https://zhuanlan.zhihu.com/p/616624985 羅超元(2022年11月12日)。〈基於EEG的戰場適應性模擬訓練情緒分析方法〉。《科學技術》,30(11),79-85。 顧以謙、劉邦揚(2018)。〈檢察機關網路聲量與情緒分析-大數據分析〉,《刑事政策與犯罪防治研究專刊》,19,22–36。 龔艷萍、馬艷玲(2017)。〈不同情緒對網路群體極化影響的實證研究-基於VAR模型〉,《商業經濟研究》,24,39–41。 BBC(2021年1月1日)。〈生育率「全球墊底」 台灣力推優惠 「勸生」為什麼這麼難?〉,《BBC News 中文》。https://www.bbc.com/zhongwen/trad/57638398 中國互聯網絡信息中心(2022年3月19日)。《2022年第49次中国互联网络发展状况统计报告》。中國互聯網絡信息中心CNNIC。https://finance.sina.cn/tech/2022-03-19/detail-imcwiwss6875143.d.html 中央研究院(2022年3月29日)。《想婚或不婚?「家庭動態調查」中的未婚者圖像》。中央研究院CSR。https://survey.sinica.edu.tw/?p=12058&lang=zh The Conversation(2023年7月14日)。〈生育率之低冠絕全球 韓國經濟不樂見的「兆頭」〉,《香港01》。https://www.hk01.com/世界專題/915332/生育率之低冠絕全球-韓國經濟不樂見的-兆頭 Tong, B.(2023年4月25日)。〈南韓少子化:全球生育率最低的國家是怎樣煉成的?〉,《CUP媒體》。https://www.cup.com.hk/2023/04/26/korea-fertility-rate-education-reform/ 株式会社ガイアックス. (2023, March). エンゲージメント率の定義とは?Facebook、X(Twitter)、Instagram、計算方法と違いをSNS別に徹底解説. ガイアックス SNSマーケティング支援サービス. https://gaiax-socialmedialab.jp/twitter/406 Agarwal, A., Biadsy, F., & McKeown, K. (2009). Contextual phrase-level polarity analysis using lexical affect scoring and syntactic n-grams. Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (EACL '09), 24–32. https://doi.org/10.3115/1609067.1609069 Albarracín, D. (2021). Action and inaction in a social world: Predicting and changing attitudes and behavior. Cambridge University Press. https://doi.org/10.1017/9781108878357 Alrumaih, A., Al-Sabbagh, A., Alsabah, R., Kharrufa, H., & Baldwin, J. (2020). Sentiment analysis of comments in social media. International Journal of Electrical and Computer Engineering (IJECE), 10(6), 5917–5922. https://doi.org/10.11591/ijece.v10i6.pp5917-5922 Avery, R., Goldscheider, F., & Speare, A. (1992). Feathered nest/gilded cage: Parental income and leaving home in the transition to adulthood. Demography, 29(3), 375–388. https://doi.org/10.2307/2061824 Axinn, W. G., & Thornton, A. (2000). The transformation in the meaning of marriage. In L. J. Waite, C. Bachrach, M. J. Hindin, E. Thomson, & A. Thornton (Eds.), The ties that bind: Perspectives on marriage and cohabitation (pp. 147–165). Aldine de Gruyter. Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497–529. https://doi.org/10.1037/0033-2909.117.3.497 Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is stronger than good. Review of General Psychology, 5(4), 323–370. https://doi.org/10.1037/1089-2680.5.4.323 Becker, G. S. (1993). A treatise on the family: Enlarged edition. Harvard University Press. Berger, J. (2011). Arousal increases social transmission of information. Psychological Science, 22(7), 891–893. https://doi.org/10.1177/0956797611413294 Berger, J., & Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research. https://doi.org/10.1509/jmr.10.0353 Blossfeld, H.-P. (1995). Changes in the process of family formation and women’s growing economic independence: A comparison of nine countries. In H.-P. Blossfeld (Ed.), The new role of women: Family formation in modern societies (pp. 3–32). Westview Press. Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. Technical Report C-1. The Center for Research in Psychophysiology, University of Florida. Buder, J., Rabl, L., Feiks, M., Badermann, M., & Zurstiege, G. (2021). Does negatively toned language use on social media lead to attitude polarization? Computers in Human Behavior, 116, 106663. https://doi.org/10.1016/j.chb.2020.106663 Buurma, H. (2001). Public policy marketing: Marketing exchange in the public sector. European Journal of Marketing, 35(11/12), 1287–1302. https://doi.org/10.1108/EUM0000000006483 Cheng, Y.-Y., Chen, Y.-M., Yeh, W.-C., & Chang, Y.-C. (2021). Valence and arousal-infused bi-directional LSTM for sentiment analysis of government social media management. Applied Sciences, 11(2), 880. https://doi.org/10.3390/app11020880 Cheong, H. J., Baksh, S. M., & Ju, I. (2022). Spiral of silence in an algorithm-driven social media content environment: Conceptual framework and research propositions. KOME, 10(1), 32–46. https://doi.org/10.17646/KOME.75672.86 Cherlin, A. J. (2004). The deinstitutionalization of American marriage. Journal of Marriage and Family, 66(4), 848–861. https://doi.org/10.1111/j.0022-2445.2004.00058.x Choe, M., & Tsuya, N. O. (2009). The institutional context of low fertility: The case of Japan. Asian Population Studies, 5(3), 215–235. https://doi.org/10.1080/17441730903351479 Coleman, S. (1983). Family planning in Japanese society: Traditional birth control in a modern urban culture. Princeton University Press. Côté, I. M., & Darling, E. S. (2018). Scientists on Twitter: Preaching to the choir or singing from the rooftops? FACETS, 3(1), 682–694. https://doi.org/10.1139/facets-2018-0002 Dahlgren, P. M. (2020). Media echo chambers: Selective exposure and confirmation bias in media use, and its consequences for political polarization. University of Gothenburg. https://gupea.ub.gu.se/handle/2077/67023 Darley, J. M., & Gross, P. H. (1983). A hypothesis-confirming bias in labeling effects. Journal of Personality and Social Psychology, 44(1), 20–33. https://doi.org/10.1037/0022-3514.44.1.20 Diaz Ruiz, C., & Nilsson, T. (2023). Disinformation and echo chambers: How disinformation circulates on social media through identity-driven controversies. Journal of Public Policy & Marketing, 42(1), 18–35. https://doi.org/10.1177/07439156221103852 Duflo, E., Glennerster, R., & Kremer, M. (2006). Using randomization in development economics research: A toolkit. In Handbook of Development Economics (Vol. 4, pp. 3895–3962). Elsevier. https://doi.org/10.1016/S1573-4471(07)04061-2 Dursun, İ., & Tümer Kabadayi, E. (2013). Resistance to persuasion in an anti-consumption context: Biased assimilation of positive product information: Biased assimilation in anti-consumption context. Journal of Consumer Behaviour, 12(2), 93–101. https://doi.org/10.1002/cb.1422 Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook “friends”: Social capital and college students’ use of online social network sites. Journal of Computer-Mediated Communication, 12(4), 1143–1168. https://doi.org/10.1111/j.1083-6101.2007.00367.x Fan, R., Zhao, J., Chen, Y., & Xu, K. (2014). Anger is more influential than joy: Sentiment correlation in Weibo. PLOS ONE, 9(10), e110184. https://doi.org/10.1371/journal.pone.0110184 Glick, J. E., Ruf, S. D., White, M. J., & Goldscheider, F. (2006). Educational engagement and early family formation: Differences by ethnicity and generation. Social Forces, 84(3), 1391–1415. Goldenberg, A., & Gross, J. J. (2020). Digital emotion contagion. Trends in Cognitive Sciences, 24(4), 316–328. https://doi.org/10.1016/j.tics.2020.01.009 Guterbock, T. M. (2010). The future of the academic survey research organization. Survey Research, 1, 4–9. He, Y., Tom Abdul Wahab, N., Muhamad, H., & Liu, D. (2024). The marital and fertility sentiment orientation of Chinese women and its influencing factors: An analysis based on natural language processing. PLOS ONE, 19(2), e0296910. https://doi.org/10.1371/journal.pone.0296910 Iyengar, S., & Hahn, K. S. (2009). Red media, blue media: Evidence of ideological selectivity in media use. Journal of Communication, 59(1), 19–39. https://doi.org/10.1111/j.1460-2466.2008.01402.x Jackson, M., & Cox, D. R. (2013). The principles of experimental design and their application in sociology. Annual Review of Sociology, 39(1), 27–49. https://doi.org/10.1146/annurev-soc-071811-145443 Kim, S.-M., & Hovy, E. (2004). Determining the sentiment of opinions. Proceedings of the 20th International Conference on Computational Linguistics (COLING '04). https://doi.org/10.3115/1220355.1220555 Kiss, Á., & Simonovits, G. (2014). Identifying the bandwagon effect in two-round elections. Public Choice, 160(3), 327–344. https://doi.org/10.1007/s11127-013-0146-y Knobloch-Westerwick, S. (2014). Choice and preference in media use: Advances in selective exposure theory and research. Routledge. Kuang, W. (2018a). Empirical studies on new-media public opinion. In W. Kuang (Ed.), Social media in China (pp. 257–261). Springer. https://doi.org/10.1007/978-981-13-0914-4_10 Kuang, W. (2018b). New-media public opinion becomes mainstream social opinion. In W. Kuang (Ed.), Social media in China (pp. 25–38). Springer. https://doi.org/10.1007/978-981-13-0914-4_2 Lee, L.-H., Li, J.-H., & Yu, L.-C. (2022). Chinese EmoBank: Building valence-arousal resources for dimensional sentiment analysis. ACM Transactions on Asian and Low-Resource Language Information Processing, 21(4), Article 51. https://doi.org/10.1145/3489141 Lee, R. M., Draper, M., & Lee, S. (2001). Social connectedness, dysfunctional interpersonal behaviors, and psychological distress: Testing a mediator model. Journal of Counseling Psychology, 48(3), 310–318. https://doi.org/10.1037/0022-0167.48.3.310 Lerner, J. S., & Keltner, D. (2001). Fear, anger, and risk. Journal of Personality and Social Psychology, 81(1), 146–159. https://doi.org/10.1037/0022-3514.81.1.146 Likes vs. Comments vs. Shares. (2020, January 14). The White Label Creative. https://thewhitelabelcreative.com/likes-vs-comments-vs-shares/ Liu, X., & Fahmy, S. (2011). Exploring the spiral of silence in the virtual world: Individuals’ willingness to express personal opinions in online versus offline settings. Journal of Media and Communication Studies, 3(2), 45–57. Lord, C., Ross, L., & Lepper, M. (1979). Biased assimilation and attitude polarization: The effects of prior theories on subsequently considered evidence. Journal of Personality and Social Psychology, 37(11), 2098–2109. https://doi.org/10.1037/0022-3514.37.11.2098 Maupomé, G., & Isyutina, O. (2013). Dental students’ and faculty members’ concepts and emotions associated with a caries risk assessment program. Journal of Dental Education, 77(11), 1477–1487. https://doi.org/10.1002/j.0022-0337.2013.77.11.tb05624.x McDonald, P. (2013). Societal foundations for explaining low fertility: Gender equity. Demographic Research, 28, 981–994. https://doi.org/10.4054/DemRes.2013.28.34 Miettinen, A., Basten, S., & Rotkirch, A. (2011). Gender equality and fertility intentions revisited: Evidence from Finland. Demographic Research, 24, 469–496. https://doi.org/10.4054/DemRes.2011.24.20 Mills, M. (2010). Gender roles, gender (in)equality and fertility: An empirical test of five gender equity indices. Canadian Studies in Population, 37(3–4), 445–474. https://doi.org/10.25336/P6131Q Mutz, D. C. (2011). Population-based survey experiments. Princeton University Press. https://doi.org/10.1515/9781400840489 Myers, D. G., & Lamm, H. (1976). The group polarization phenomenon. Psychological Bulletin, 83(4), 602–627. https://doi.org/10.1037/0033-2909.83.4.602 Myrskylä, M., Billari, F., & Kohler, H.-P. (2011). High development and fertility: Fertility at older reproductive ages and gender equality explain the positive link. Science, 331(6017), 220–223. https://doi.org/10.1126/science.1199405 Nadelson, C. C., & Notman, M. T. (1981). To marry or not to marry: A choice. The American Journal of Psychiatry, 138(10), 1352–1356. https://doi.org/10.1176/ajp.138.10.1352 Nagarajan, M., Purohit, H., & Sheth, A. (2010). A qualitative examination of topical tweet and retweet practices. Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media. Nelson-Field, K., Riebe, E., & Newstead, K. (2013). The emotions that drive viral video. Australasian Marketing Journal, 21(4), 205–211. https://doi.org/10.1016/j.ausmj.2013.07.003 Nguyen, C. T. (2020). Echo chambers and epistemic bubbles. Episteme, 17(2), 141–161. https://doi.org/10.1017/epi.2018.32 Omoera, O., & Guanah, J. (2022). Interactive nature of social media’s comment feature: An analysis of commenters’ comments during the #EndSARS protests in Nigeria. Interactive Film & Media Journal, 2(2), Article 2. https://doi.org/10.32920/ifmj.v2i2.1584 Panksepp, J. (2010). Affective neuroscience of the emotional brain: Evolutionary perspectives and implications for understanding depression. Dialogues in Clinical Neuroscience, 12(4), 533–545. Petrauskas, A. (2021). Plutchik’s wheel and the unity of opposites. The Journal of Mind and Behavior, 38(1), 17–30. Petrovic, S., Osborne, M., & Lavrenko, V. (2011). RT to win! Predicting message propagation in Twitter. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 586–589. https://doi.org/10.1609/icwsm.v5i1.14149 Pison, G. (2012). France and Germany: A history of criss-crossing demographic curves. Population & Societies, 487(3), 1–4. Plutchik, R. (1984). Emotions and imagery. Journal of Mental Imagery, 8(4), 105–111. Posner, J., Russell, J. A., & Peterson, B. S. (2005). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17(3), 715–734. https://doi.org/10.1017/S0954579405050340 Qian, H. (2022). Review of comment sentiment analysis based on emoticons: 2021 International Conference on Public Art and Human Development (ICPAHD 2021), Kunming, China. https://doi.org/10.2991/assehr.k.220110.109 Quattrociocchi, W., & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9), e2023301118. https://doi.org/10.1073/pnas.2023301118 Raymo, J. M., Park, H., Xie, Y., & Yeung, W. (2015). Marriage and family in East Asia: Continuity and change. Annual Review of Sociology, 41(1), 471–492. https://doi.org/10.1146/annurev-soc-073014-112428 Razavi, P., Zhang, J., Hekiert, D., Yoo, S., & Howell, R. (2016). Cross-cultural similarities and differences in the experience of awe. Emotion, 16(8), 1186–1192. https://doi.org/10.1037/emo0000225 Reeve, J. (2018). Understanding motivation and emotion. Wiley. Rosen, L. (2012, July 6). The power of “like.” Psychology Today. https://www.psychologytoday.com/intl/blog/rewired-the-psychology-technology/201207/the-power Russell, J. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714 Ryzin, G. V. (2004). Drivers and consequences of citizen satisfaction: An application of the American customer satisfaction index model to New York City. Public Administration Review, 64(3), 331–341. https://www.academia.edu/2220162/Drivers_and_consequences_of_citizen_satisfaction_An_application_of_the_American_customer_satisfaction_index_model_to_New_York_City Sakode, H., Surekha, T. L., Sri, M. D., & Kumar, G. B. (2023). Sentiment analysis using text and emojis. 2023 International Conference on Inventive Computation Technologies (ICICT), 627–634. https://doi.org/10.1109/ICICT57646.2023.10134459 Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69(5), 379–399. https://doi.org/10.1037/h0046234 Schaeffer, N. C., & Presser, S. (2003). The science of asking questions. Annual Review of Sociology, 29(1), 65–88. https://doi.org/10.1146/annurev.soc.29.110702.110112 Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4), 695–729. https://doi.org/10.1177/0539018405058216 Schiffman, L. G., & Kanuk, L. L. (1991). Consumer behavior (4th ed.). Prentice Hall. Schmitt-Beck, R. (2015). Bandwagon effect. In The international encyclopedia of political communication (pp. 1–5). John Wiley & Sons. https://doi.org/10.1002/9781118541555.wbiepc015 Smith, L., Blackwood, L., & Thomas, E. (2019). The need to refocus on the group as the site of radicalization. Perspectives on Psychological Science, 15, 174569161988587. https://doi.org/10.1177/1745691619885870 Snijders, R., & Helms, R. (2014). Analyzing social influence through social media: A structured literature review. In Proceedings of the 7th IADIS International Conference Information Systems 2014 (pp. 3–10). Staff, N. (2017, September 11). Psychologists identify twenty-seven distinct categories of emotion. Sci-News.com. https://www.sci-news.com/psychology/27-categories-emotion-05269.html Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29(4), 217–248. https://doi.org/10.2753/MIS0742-1222290408 Stoner, J. A. F. (1961). A comparison of individual and group decisions involving risk [Thesis, Massachusetts Institute of Technology]. https://dspace.mit.edu/handle/1721.1/11330 Sunstein, C. R. (n.d.). The law of group polarization. The University of Chicago Law School John M. Olin Law & Economics Working Paper, 91. Tajfel, H., & Turner, J. (2001). An integrative theory of intergroup conflict. In Intergroup relations: Essential readings (pp. 94–109). Psychology Press. Tashmin, N. (2016). Art of impression management on social media. Proceedings of the 7th International Conference on Social Media and Society, 100–107. Țarcă, V., Țarcă, E., & Luca, F. (2022). The impact of the main negative socio-economic factors on female fertility. Healthcare, 10(4), 734. https://doi.org/10.3390/healthcare10040734 Valenzuela, S., Park, N., & Kee, K. F. (2009). Is there social capital in a social network site?: Facebook use and college students’ life satisfaction, trust, and participation. Journal of Computer-Mediated Communication, 14(4), 875–901. https://doi.org/10.1111/j.1083-6101.2009.01474.x Valkenburg, P. M., Peter, J., & Schouten, A. P. (2006). Friend networking sites and their relationship to adolescents’ well-being and social self-esteem. CyberPsychology & Behavior, 9(5), 584–590. https://doi.org/10.1089/cpb.2006.9.584 Wang, Q., & Xu, S. (2016). The role of socio-political and economic factors in fertility decline: A cross-country analysis. World Development, 87, 360–370. https://doi.org/10.1016/j.worlddev.2016.07.004 Wanke, G. B. (2014). Attitudes and attitude change. Psychology Press. https://doi.org/10.4324/9781315784786 Worley, D. (2021). Tajfel and Turner intergroup conflict theories 1997. ResearchGate. https://doi.org/10.13140/RG.2.2.30820.60809 Yazdanifard, R., Obeidy, W., Fadzilah, W., Wan Yusoff, W. F., & Babaei, H. (2011). Social networks and microblogging; The emerging marketing trends & tools of the twenty-first century. International Journal of Academic Research in Business and Social Sciences, 5(1), 146–157. Yu, L.-C., Lee, L.-H., Hao, S., Wang, J., He, Y., Hu, J., Lai, K. R., & Zhang, X. (2016). Building Chinese affective resources in valence-arousal dimensions. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 540–545. https://doi.org/10.18653/v1/N16-1066 Zhao, J., Wu, J., & Xu, K. (2010). Weak ties: Subtle role of information diffusion in online social networks. Physical Review E, 82(1), 016105. https://doi.org/10.1103/PhysRevE.82.016105  zh_TW