學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 生物技術專利申請之書面說明要件―以抗原抗體技術領域判決為中心
Written Description in Biological Technology Patent Application―Focusing on the Judgments in the Field of Antigen and Antibody Technology
作者 王羿雯
Wang, Yi-Wen
貢獻者 沈宗倫
Shen, Chung-Lun
王羿雯
Wang, Yi-Wen
關鍵詞 生物科技
美國專利法
書面說明要件
抗原抗體技術
專利應用
Biological Technology
U.S. Patent Law
Written Description Requirement
Antigen-Antibody Technology
Patent Application
日期 2024
上傳時間 4-十月-2024 11:04:43 (UTC+8)
摘要 本文主要分為三大部分,內容涵蓋基因科技、美國專利法書面說明要件的判決發展演變,以及對臺灣專利法的影響和建議。 第一部分:介紹DNA、RNA和基因結構的基本背景知識,隨後,深入探討基因定序技術的發展歷程,以及各世代定序技術的差異。另外,延伸至抗原抗體領域,介紹抗體與抗原之間的作用和機制,並探討最新的免疫治療技術。這些技術展現生物醫藥領域的進展,及抗原抗體藥物在臨床治療中的應用。 第二部分:分析美國專利法第35章第112條的內容和影響,尤其針對第(a)項「書面說明要件(Written Description)」的法律解釋與實務操作。這一部分詳細回顧相關經典案例,分析這些判決對專利申請的具體影響,特別是抗原抗體領域的專利案件。透過這些案例,探討原告、被告在專利訴訟中的主要論點和法院的裁判思考,並分析判決如何影響專利說明書的撰寫和實務操作。 第三部分:回顧上述判決對美國生技產業實務影響,並討論臺灣專利法是否應採行「書面說明要件」。倘若引入「書面說明要件」的優缺點,探討對臺灣專利法第26條「書面說明要件」的潛在影響,及對生技產業的衝擊。考量到國際接軌需要,本部分將提出對臺灣專利法的建議,討論如何在不破壞現有法律體系的前提下,引入該要件以提升專利保護的完整性和專利審查有效性。 最後總結將對「書面說明要件」提出建議,期望在生技醫藥產業發展、抗原抗體技術領域和專利法規範三者間達成最佳的協調與平衡。希望本文能促進臺灣專利法國際化,提升專利保護效能,並推動生技產業進一步發展。
This thesis was divided into three main sections, covering gene technology, the evolution of suitcases regarding the written description requirement under U.S. patent law, and its impact on Taiwan’s patent law. First Section: It introduced the basic background knowledge of DNA, RNA, and gene structure, followed by an in-depth exploration of the development history of gene sequencing technologies and the differences among various generations of sequencing methods. Additionally, it extended into the field of antigens and antibodies, explaining the interactions and mechanisms between antibodies and antigens, and discussing the latest advancements in clinical immunotherapy. These technologies highlighted progress in the biomedicine field and the clinical applications of antibody drugs. Second Section: It analyzed the content and impact of Article 112 of Chapter 35 of U.S. patent law, particularly focusing on the section (a), the “written description requirement.” This section provided a detailed review of classic cases, examining how these rulings specifically affect patent applications, especially in the field of antibody-antigen patents. Through these cases, it explored the main arguments of plaintiffs and defendants in patent litigation, the court’s reasoning, and how the rulings influence the drafting of patent descriptions and practical operations. Third Section: It reviewed the influence on the afore-mentioned rulings on the U.S. biotech industry and discussed whether Taiwan’s patent law should adopt the “written description requirement.” It considered the pros and cons of introducing this requirement and explored its potential effects on Article 26 of Taiwan’s patent law regarding “written description"or not. Given the need for international pace, this section offered suggestions for Taiwan’s patent law, discussing how to introduce this requirement without revising the existing article to enhance the integrity of patent protection and the effectiveness of patent examination. Finally, the conclusion provided suggestions on the “written description", aiming to achieve optimal coordination and balance among the development of the biomedical industry, the field of antigen-antibody technology, and patent regulation. It hoped to promote the internationalization of Taiwan’s patent law, enhance the effectiveness of patent protection, and further drive the development of the biotech industry.
參考文獻 一、 中文(依姓氏筆畫排序) (一) 期刊論著 1. 王安志,以Amgen Inc. v. Sanofi案論美國專利申請案之可據以實施要件,聖島智慧財產專業團體實務報導,第26期,2024年 2. 王偉霖、廖健翔,美國專利法書面說明要件之研究,科技法學論叢,201401(第9期),頁167-207,2014年1月 3. 吳宏亮,一種請求項是否為說明書所支持的審查標準—要件除去原則之探究與引用,智慧財產月刊,第198期,頁91-122,2015年5月 4. 吳佩諄、張茜毓、黃教威、陳世芹、張維纓、林佳慧,抗體相關發明之專利審查實務分析,智慧財產權月刊,第258期,頁6-39,2020年6月 5. 吳俊男、蔡敏鈴,PCSK9 inhibitor 的簡介,藥學雜誌,第32期,2016年6月 6. 李秉燊,美國專利書面說明要件判決對生技產業的潛在影響――以抗體技術領域為中心,智慧財產權月刊,第253期,頁54-71,2020年 7. 沈宗倫,抗體相關發明下專利「可據以實現要件」之再詮釋 -以美國聯邦最高法院Amgen Inc. v. Sanofi一案為思考起,台灣法律人, 第33期,頁34-52,2024年3月 8. 許育瑋、蔡佩芬,免疫療法的絆腳石:irAEs,藥學雜誌電子報,第36期,2020年3月 9. 許育瑋、蔡佩芬,基因療法的新藍海:CAR-T,藥學雜誌電子報,第34期,2018年12月 10. 陳秉訓,美國專利訴訟制度:以專利有效性問題為中心,智慧財產權月刊,第131期,頁67-101,2009年6月 11. 陳雅珊、沈家瑞,2018諾貝爾醫學獎――抗癌大躍進,科學發展,第557期,頁48-53,2019年5月 12. 馮震宇,從專利到營業秘密──智財保護新趨勢顯現,月旦會計實務研究,第15期,頁72-79,2019年3月 13. 黃麗榕,揭開抗血小板藥物的新頁―Abciximab,藥學雜誌 ,第14卷第3期,1998年 14. 葉舜華、歐師維,抗體專利之說明書揭露-從美國 Centocor Ortho Biotech, Inc. v. Abbott Laboratories 案談起,專利師,第8期,頁72-81,2012年 15. 簡玉如,抗體專利的可據以實施要件-由美國最高法院 Amgen v. Sanofi 案最終判決談起,雙週專利電子報,第339期,2023年12月 (二) 網路資料 1. 李林璦,英國第三代定序開發商Oxford Nanopore 倫敦IPO首日飆漲45% 市值達68.4億美元, Global Bio & Investment 環球生技(2021),available at https://news.gbimonthly.com/tw/article/show.php?num=43360 2. 林書毅、鄭志玲,美國:AbbVie 抗體專利不符書面揭露要件被判無效,惇安律師事務所(2014) , available at https://www.lawbank.com.tw/news/NewsContent.aspx?NID=122621. 3. 施雅薰,CAR-T細胞治療產品Yescarta美國專利侵權訴訟逆轉勝,CAFC認定專利不符書面說明要件而無效, 財團法人資訊工業策進會科技法律研究所(2021), available at https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8720. 4. 葉雲卿、張連成,CAR-T免疫療法的演變、核准與專利戰, May, 26,2021(2021), available at http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Biotechnology/IPNC_210526_1101.htm 5. 衛生福利部中央健康保險署, 111年各類癌症健保前10大醫療支出統計(112.04.06新增)(2023) , available at https://www.nhi.gov.tw/ch/cp-6018-9886a-3042-1.html. 6. 衛生福利部國民健康署癌症防治組,公布110年國人癌症登記資料分析結果 五癌篩檢定期做 早發現早治療(2023),available at https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4705&pid=17641. 7. 羅傑,書面說明是專利之獨立要件, 國家實驗研究員科技政策研究與資訊中心―科技產業資訊室 (iKnow)(2011) , available at https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=6410. (三) 判決 1. 智慧財產法院108年度行專訴字第59號判決,(智慧財產法院 Mar. 31, 2020). 2. 智慧財產及商業法院110年度民專訴字第37號民事判決,(智慧財產及商業法院 Mar. 31, 2023). 3. 最高行政法院111年度上字第896號判決,(最高行政法院 Jan. 25, 2024). 二、 英文 (一) 期刊論著 1. A license to print money?, 24 NAT BIOTECHNOL (2006). 2. A. C. Anderson, et al., Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation, 44 IMMUNITY (2016). 3. A. D. Waldman, et al., A guide to cancer immunotherapy: from T cell basic science to clinical practice, 20 NAT REV IMMUNOL (2020). 4. A. F. Labrijn, et al., Bispecific antibodies: a mechanistic review of the pipeline, 18 NAT REV DRUG DISCOV (2019). 5. A. Gupta, et al., Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab, 385 N ENGL J MED (2021). 6. A. J. Bannister & T. Kouzarides, Regulation of chromatin by histone modifications, 21 CELL RES (2011). 7. A. Nisonoff, et al., Properties of the major component of a peptic digest of rabbit antibody, 132 SCIENCE (1960). 8. A. Pedrioli & A. Oxenius, Single B cell technologies for monoclonal antibody discovery, 42 TRENDS IMMUNOL (2021). 9. ALAN WOLFFE, CHROMATIN: STRUCTURE AND FUNCTION (Academic press. 1998). 10. Bharat B. Aggarwal & Jan Vilček, Tumor necrosis factors : structure, function, and mechanism of action (M. Dekker 1992). 11. C. J. Workman, et al., Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3, 169 J IMMUNOL (2002). 12. C. Zhang, et al., Engineering CAR-T cells, 5 BIOMARK RES (2017). 13. Chinmoy K. Bose & Soma Mukhopadhyay, Combined positive score (CPS) for scoring PD-L1 positivity, 5 CANCER RESEARCH, STATISTICS, AND TREATMENT (2022). 14. D. J. Shealy, et al., Anti-TNF-alpha antibody allows healing of joint damage in polyarthritic transgenic mice, 4 ARTHRITIS RES (2002). 15. D. Jorgovanovic, et al., Roles of IFN-gamma in tumor progression and regression: a review, 8 BIOMARK RES (2020). 16. Darlene M.J. Staines, THE PATENT WRITTEN DESCRIPTION REQUIREMENT: A REQUIREMENT IN SEARCH OF A DESCRIPTION, 92 FORDHAM LAW REVIEW 1195(2023). 17. Dennis Crouch, AN EMPIRICAL STUDY OF THE ROLE OF THE WRITTEN DESCRIPTION REQUITEMENT IN PATENT EXAMINATION, 104 NORTHWESTERN UNIVERSITY LAW REVIEW COLLOQUY 382(2010). 18. E. A. Carswell, et al., An endotoxin-induced serum factor that causes necrosis of tumors, 72 PROC NATL ACAD SCI U S A (1975). 19. E. Baulu, et al., TCR-engineered T cell therapy in solid tumors: State of the art and perspectives, 9 SCI ADV (2023). 20. E. Dolgin, The most popular genes in the human genome, 551 NATURE (2017). 21. E. I. Buchbinder & A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition, 39 AM J CLIN ONCOL (2016). 22. E. R. S. Cliff, et al., High Cost of Chimeric Antigen Receptor T-Cells: Challenges and Solutions, 43 AM SOC CLIN ONCOL EDUC BOOK (2023). 23. F. S. Hodi, et al., Improved survival with ipilimumab in patients with metastatic melanoma, 363 N ENGL J MED (2010). 24. G. Kohler & C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, 256 NATURE (1975). 25. H. H. Fudenberg, et al., Serologic Demonstration of Dual Specificity of Rabbit Bivalent Hybrid Antibody, 119 J EXP MED (1964). 26. H. Sung, et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, 71 CA CANCER J CLIN (2021). 27. H. T. Naismith Idriss, J. H., TNF alpha and the TNF receptor superfamily: structure-function relationship(s), 50 MICROSC RES TECH (2000). 28. Initiative Arabidopsis Genome, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, 408 NATURE (2000). 29. International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome, 431 NATURE (2004). 30. J. A. Marin-Acevedo, et al., Next generation of immune checkpoint therapy in cancer: new developments and challenges, 11 J HEMATOL ONCOL (2018). 31. J. B. Gibbons, et al., Humira: the first $20 billion drug, 29 AM J MANAG CARE (2023). 32. J. C. Alwine, et al., Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes, 74 PROC NATL ACAD SCI U S A (1977). 33. J. E. Rosenberg, et al., Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, 387 LANCET (2016). 34. J. Gao, et al., VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer, 23 NAT MED (2017). 35. J. Gong, et al., Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations, 6 J IMMUNOTHER CANCER (2018). 36. J. Liu, et al., Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses, 112 PROC NATL ACAD SCI U S A (2015). 37. J. Liu, et al., Interleukin-12: an update on its immunological activities, signaling and regulation of gene expression, 1 CURR IMMUNOL REV (2005). 38. J. Liu, et al., PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy, 12 FRONT PHARMACOL (2021). 39. J. M. Chauvin & H. M. Zarour, TIGIT in cancer immunotherapy, 8 J IMMUNOTHER CANCER (2020). 40. J. M. Chauvin, et al., TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients, 125 J CLIN INVEST (2015). 41. J. M. Krueger, et al., Sleep. A physiologic role for IL-1 beta and TNF-alpha, 856 ANN N Y ACAD SCI (1998). 42. J. Ma, et al., Bispecific Antibodies: From Research to Clinical Application, 12 FRONT IMMUNOL (2021). 43. J. McCafferty, et al., Phage antibodies: filamentous phage displaying antibody variable domains, 348 NATURE (1990). 44. J. Nam, Son, S., Park, K., et al., Cancer nanomedicine for combination cancer immunotherapy, 4 NATURE REVIEWS MATERIALS (2019). 45. J. Vilcek & T. H. Lee, Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions, 266 J BIOL CHEM (1991). 46. J.R. CROWTHER, THE ELISA GUIDEBOOK: SECOND EDITION (Humana Press. 2010). 47. Jill U. Adams, DNA sequencing technologies, 1(1):193 NATURE EDUCATION (2008). 48. John Powderly, et al., Interim results of an ongoing Phase I, dose escalation study of MGA271 (Fc-optimized humanized anti-B7-H3 monoclonal antibody) in patients with refractory B7-H3-expressing neoplasms or neoplasms whose vasculature expresses B7-H3, 3 JOURNAL FOR IMMUNOTHERAPY OF CANCER (2015). 49. JS Bonde; L Bülow, Brenner's Encyclopedia of Genetics, 2013. 50. K. Kulangara, et al., Clinical Utility of the Combined Positive Score for Programmed Death Ligand-1 Expression and the Approval of Pembrolizumab for Treatment of Gastric Cancer, 143 ARCH PATHOL LAB MED (2019). 51. K. L. Knutson & M. L. Disis, Tumor antigen-specific T helper cells in cancer immunity and immunotherapy, 54 CANCER IMMUNOL IMMUNOTHER (2005). 52. K. R. Kumar, et al., Next-Generation Sequencing and Emerging Technologies, 45 SEMIN THROMB HEMOST (2019). 53. L. A. Raedler, Keytruda (Pembrolizumab): First PD-1 Inhibitor Approved for Previously Treated Unresectable or Metastatic Melanoma, 8 AM HEALTH DRUG BENEFITS (2015). 54. L. Olsson & H. S. Kaplan, Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity, 77 PROC NATL ACAD SCI U S A (1980). 55. L. Sun, et al., Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease, 75 CYTOKINE (2015). 56. Li Di; Edward H. Kerns, Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization (Elsevier Inc. Second ed. 2016).. 57. Liam Drew, How does a cancer vaccine work?, 627 NATURE 834(2024). 58. M. A. Quail, et al., A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers, 13 BMC GENOMICS (2012). 59. M. A. Wride & E. J. Sanders, Potential roles for tumour necrosis factor alpha during embryonic development, 191 ANAT EMBRYOL (BERL) (1995). 60. M. Chmielewski & H. Abken, TRUCKs: the fourth generation of CARs, 15 EXPERT OPIN BIOL THER (2015). 61. M. D. Adams, et al., The genome sequence of Drosophila melanogaster, 287 SCIENCE (2000). 62. M. Das, et al., Tim-3 and its role in regulating anti-tumor immunity, 276 IMMUNOL REV (2017). 63. M. E. Frankel & W. Gerhard, The rapid determination of binding constants for antiviral antibodies by a radioimmunoassay. An analysis of the interaction between hybridoma proteins and influenza virus, 16 MOL IMMUNOL (1979). 64. M. H. Park & J. T. Hong, Roles of NF-kappaB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches, 5 CELLS (2016). 65. M. J. Mendez, et al., Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice, 15 NAT GENET (1997). 66. M. M. Mohammadi & O. Bavi, DNA sequencing: an overview of solid-state and biological nanopore-based methods, 14 BIOPHYS REV (2022). 67. M. O. Pollard, et al., Long reads: their purpose and place, 27 HUM MOL GENET (2018). 68. M. Reck, et al., Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer, 375 N ENGL J MED (2016). 69. M. V. Goldberg & C. G. Drake, LAG-3 in Cancer Immunotherapy, 344 CURR TOP MICROBIOL IMMUNOL (2011). 70. M. Z. Wojtukiewicz, et al., Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners, 40 CANCER METASTASIS REV (2021). 71. Margaret Sampson, The Evolution of the Enablement and Written Description Requirements Under 35 U.S.C. § 112 in the Area of Biotechnology, 15 BERKELEY TECHNOLOGY LAW JOURNAL 1233(2000). 72. MARK A . LEMLEY & JACOBS . SHERKOW, The Antibody Patent Paradox, 132 THE YALE LAW JOURNAL 994(2023). 73. N. Biswas, et al., Designing neoantigen cancer vaccines, trials, and outcomes, 14 FRONT IMMUNOL (2023). 74. N. C. Ward, et al., IL-2/CD25: A Long-Acting Fusion Protein That Promotes Immune Tolerance by Selectively Targeting the IL-2 Receptor on Regulatory T Cells, 201 J IMMUNOL (2018). 75. N. Lonberg, et al., Antigen-specific human antibodies from mice comprising four distinct genetic modifications, 368 NATURE (1994). 76. N. Lonberg, Fully human antibodies from transgenic mouse and phage display platforms, 20 CURR OPIN IMMUNOL (2008). 77. N. Sobhani, et al., CTLA-4 in Regulatory T Cells for Cancer Immunotherapy, 13 CANCERS (BASEL) (2021). 78. N. Watanabe & M. K. McKenna, Generation of CAR T-cells using gamma-retroviral vector, 167 METHODS CELL BIOL (2022). 79. P. B. Medawar, The behaviour and fate of skin autografts and skin homografts in rabbits: A report to the War Wounds Committee of the Medical Research Council, 78 J ANAT (1944). 80. P. De Marchi, et al., PD-L1 expression by Tumor Proportion Score (TPS) and Combined Positive Score (CPS) are similar in non-small cell lung cancer (NSCLC), 74 J CLIN PATHOL (2021). 81. P. J. Delves & I. M. Roitt, The immune system. First of two parts, 343 N ENGL J MED (2000). 82. P. Schmid, et al., Pembrolizumab for Early Triple-Negative Breast Cancer, 382 N ENGL J MED (2020). 83. P. T. Jones, et al., Replacing the complementarity-determining regions in a human antibody with those from a mouse, 321 NATURE (1986). 84. P.J. FEDERICO, The Patent Trials of Oliver Evans, 27 JOURNAL OF THE PATENT OFFICE SOCIETY 657(1945). 85. Paul Verdin, Top product forecasts for 2024, 23 NATURE REVIEWS DRUG DISCOVERY 13(2024). 86. Pu-Cheng (Leo) Huang, A Decade After Ariad: What is the Written Description Standard for Emerging Bio-Pharma Patents?, 17 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS 131(2022). 87. R. E. Billingham, et al., Quantitative studies on tissue transplantation immunity. II. The origin, strength and duration of actively and adoptively acquired immunity, 143 PROC R SOC LOND B BIOL SCI (1954). 88. R. E. Tay, et al., Revisiting the role of CD4(+) T cells in cancer immunotherapy-new insights into old paradigms, 28 CANCER GENE THER (2021). 89. R. M. Lu, et al., Development of therapeutic antibodies for the treatment of diseases, 27 J BIOMED SCI (2020). 90. R. S. Herbst, et al., Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC, 383 N ENGL J MED (2020). 91. S. A. Rosenberg, Adoptive immunotherapy for cancer, 262 SCI AM (1990). 92. S. Chhangawala, et al., The impact of read length on quantification of differentially expressed genes and splice junction detection, 16 GENOME BIOL (2015). 93. S. Feins, et al., An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer, 94 AM J HEMATOL (2019). 94. S. J. Keam, Tremelimumab: First Approval, 83 DRUGS (2023). 95. S. L. Amarasinghe, et al., Opportunities and challenges in long-read sequencing data analysis, 21 GENOME BIOL (2020). 96. S. L. Maude, et al., Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia, 378 N ENGL J MED (2018). 97. S. M. Albelda, CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn, 21 NAT REV CLIN ONCOL (2024). 98. S. Sean Tu & Christopher M. Holman, Antibody Patents: Use of the Written Description and Enablement Requirements at the Patent & Trademark Office, 38 BERKELEY TECHNOLOGY LAW JOURNAL 1(2023). 99. S. SEAN TU; CHRISTOPHER M. HOLMAN, ANTIBODY CLAIMS AND THE EVOLUTION OF THE WRITTEN DESCRIPTION/ENABLEMENT REQUIREMENT, 63 IDEA – THE LAW REVIEW OF THE FRANKLIN PIERCE CENTER FOR IP 84(2021). 100. S. Van Coillie, et al., Molecular and Cellular Functions of CTLA-4, 1248 ADV EXP MED BIOL (2020). 101. T. B. Gibson, et al., Randomized phase III trial results of panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody, in metastatic colorectal cancer, 6 CLIN COLORECTAL CANCER (2006). 102. T. Miyazaki, et al., LAG-3 is not responsible for selecting T helper cells in CD4-deficient mice, 8 INT IMMUNOL (1996). 103. W. S. Pearman, et al., Testing the advantages and disadvantages of short- and long- read eukaryotic metagenomics using simulated reads, 21 BMC BIOINFORMATICS (2020). 104. W. Tang, et al., TIGIT, a novel immune checkpoint therapy for melanoma, 14 CELL DEATH DIS (2023). 105. W. W. Deng, et al., LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma, 5 ONCOIMMUNOLOGY (2016). 106. X. Deng, et al., Enhancing antibody patent protection using epitope mapping information, 10 MABS (2018). 107. Y. A. Heo, Sotrovimab: First Approval, 82 DRUGS (2022). 108. Y. He, et al., Lymphocyte-activation gene-3, an important immune checkpoint in cancer, 107 CANCER SCI (2016). 109. Y. Kuwana, et al., Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions, 149 BIOCHEM BIOPHYS RES COMMUN (1987). 110. Z. Wang, et al., Development of therapeutic antibodies for the treatment of diseases, 3 MOL BIOMED (2022). (二) 網路資料 1. About the Cancer Moonshot℠, National Cancer Institute(2023), available at https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative/about. 2. ACE Biolabs, ELISA原理介紹, available at https://www.acebiolab.com/TW/news/40. 3. Arsalan M. Safiullah, Functional Claiming of Broad Genus Potentially Including Millions of Antibodies Rejected by U.S. Supreme Court, Osha Bergman Watanabe & Burton LLP(2023), available at https://www.obwb.com/newsletter/functional-claiming-of-broad-genus-potentially-including-millions-of-antibodies-rejected-by-us-supreme-court. 4. Binod Pokhrel; Mark V. Pellegrini; Steven N. Levine., PCSK9 Inhibitors, StatPearls [Internet]. Treasure Island (FL)(2024), available at https://www.ncbi.nlm.nih.gov/books/NBK448100/. 5. Bruce Booth, Human Antibody Discovery: Of Mice And Phage, Forbes(2017), available at https://www.forbes.com/sites/brucebooth/2017/05/11/human-antibody-discovery-of-mice-and-phage/#33a300977f26. 6. Cancer Moonshot℠ - Recent Fiscal Year Funding(2023), available at https://www.cancer.gov/about-nci/budget/fact-book/cancer-moonshot. 7. Charles E. Lipsey, Litigation of the Written Description, FINNEGAN(2005), available at https://www.finnegan.com/en/insights/articles/litigation-of-the-written-description.html. 8. Creative Biolabs, scFv Fragment Antibody, available at https://www.creativebiolabs.net/scfv-fragment-antibodies_25.htm. 9. Emily M. Hartsough Meghan Lindstrom, Pawel Mroz., NGS-general(2023), available at https://www.pathologyoutlines.com/topic/molecularnextgensequencing.html. 10. MD Alpana Mohta, Understanding Hybridoma Technology for Monoclonal Antibody Production, The Scientist(2023), available at https://www.the-scientist.com/understanding-hybridoma-technology-for-monoclonal-antibody-production-71108. 11. Michael Franzinger;Kevin Greenleaf, Key Takeaways from the USPTO’s New Guidance on Written Description and Enablement, DENTONS(2024), available at https://www.dentons.com/en/insights/alerts/2024/january/12/key-takeaways-from-the-usptos-new-guidance-on-written-description-and-enablement. 12. NobelPrize.org., The Nobel Prize in Chemistry 1980(1980), available at https://www.nobelprize.org/prizes/chemistry/1980/summary/. 13. NobelPrize.org., The Nobel Prize in Physiology or Medicine 1962., available at https://www.nobelprize.org/prizes/medicine/1962/summary/. 14. Patrick Saad; Anup Kasi., Ipilimumab., 2023 Apr 10(2023), available at https://www.ncbi.nlm.nih.gov/books/NBK557795/. 15. Paul W. Browning; Denise Main; Pier D. DeRoo, A Closer Look at the Post-Ariad Written Description Requirement(2012), available at https://www.finnegan.com/en/insights/articles/a-closer-look-at-the-post-ariad-written-description-requirement.html. 16. Press release.NobelPrize.org., Nobel Prize Outreach AB 2024(1984), available at https://www.nobelprize.org/prizes/medicine/1984/press-release/. 17. Samantha Handler, Biogen’s Rehearing Denial Lays New Hurdles for Pharma Patents, BLOOMBERG LAW(2022), available at https://news.bloomberglaw.com/ip-law/biogens-rehearing-denial-lays-new-hurdles-for-pharma-patents. 18. Sir Gregory P. Winter – Biographical. NobelPrize.org., Nobel Prize Outreach AB 2024.(2018), available at https://www.nobelprize.org/prizes/chemistry/2018/winter/biographical/. 19. The Nobel Prize in Physiology or Medicine 2018. NobelPrize.org., Nobel Prize Outreach AB 2024.(2018), available at https://www.nobelprize.org/prizes/medicine/2018/summary/. 20. Trianni Inc., Whitepaper: Transgenic Mice: Transforming Targeted Monoclonal Antibody (mAb) Therapeutics(2017), available at http://trianni.com/wp-content/uploads/2016/09/Trianni-mAb-Whitepaper_e_sept12.pdf. 21. Trupti Wadekar; Digvijay Gawali; Roshan Deshmukh, CAR T-Cell Therapy Market Size, Share, Competitive Landscape and Trend Analysis Report by Drug type, by Indication, by End user : Global Opportunity Analysis and Industry Forecast, 2023-2032, Allied Market Research(2023), available at https://www.alliedmarketresearch.com/car-t-cell-therapy-market-A16971. (三) 判決 1. Abbvie Deutschland GmbH & Co., KG v. Janssen Biotech, Inc., 759 F.3d 1285 (Fed. Cir. 2014), (United States Court of Appeals, Federal Circuit. Jul 1, 2014). 2. Application of Storrs., 245 F.2d 474 (C.C.P.A. 1957), (United States Court of Customs and Patent Appeals Jun 17, 1957). 3. Capon v. Eshhar., 418 F.3d 1349 (Fed. Cir. 2005), (United States Court of Appeals, Federal Circuit Aug 12, 2005). 4. Centocor Ortho Biotech v. Abbott Lab., 636 F.3d 1341 (Fed. Cir. 2011), (United States Court of Appeals, Federal Circuit Feb 23, 2011). 5. Festo Corp. v. Shoketsu Kinzoku Kogyo Kabushiki Co., 535 U.S. 722 (2002), (U.S. Supreme Court May 28, 2002). 6. Hybritech Inc. v. Monoclonal Antibodies, Inc., 802 F.2d 1367 (Fed. Cir. 1986), (United States Court of Appeals, Federal Circuit Sep 19, 1986). 7. In re Wands., 858 F.2d 731 (Fed. Cir. 1988), (United States Court of Appeals, Federal Circuit Sep 30, 1988). 8. Juno Therapeutics, Inc. v. Kite Pharma, Inc., 10 F.4th 1330 (Fed. Cir. 2021), (United States Court of Appeals, Federal Circuit Aug 26, 2021). 9. Montclair v. Ramsdell, 107 U.S. 147 (1883), (U.S. Supreme Court March 5, 1883). 10. Noelle v. Lederman., 355 F.3d 1343 (Fed. Cir. 2004), (United States Court of Appeals, Federal Circuit Jan 20, 2004). 11. O'Reilly v. Morse, 56 U.S. 15 How. 62 62 (1853), (U.S. Supreme Court January 30, 1854). 12. Schriber-Schroth Co. v. Cleveland Trust Co., 305 U.S. 47 (1938), (U.S. Supreme Court November 7, 1938). 13. Trs. of the Univ. of Pa. v. St. Jude Children's Research Hosp., 982 F. Supp. 2d 518 (E.D. Pa. 2013), (UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF PENNSYLVANIA Nov 13, 2013). 14. Ariad Pharmaceuticals, Inc. v. Eli Lilly & Co., 598 F.3d 1336 (Fed. Cir. 2010) (en banc), (United States Court of Appeals for the Federal Circuit March 22, 2010). 15. In re Ruschig, 379 F.2d 990 (C.C.P.A. 1967), (United States Court of Customs and Patent Appeals Jun 22, 1967). 16. Amgen, Inc. v. Chugai Pharmaceutical Co. LTD, 927 F.2d 1200 (Fed. Cir. 1991), (United States Court of Appeals, Federal Circuit). 17. Fiers v. Revel, 984 F.2d 1164 (Fed. Cir. 1993), (United States Court of Appeals, Federal Circuit Jan 19, 1993). 18. Regents of the Univ. of Cal. v. Eli Lilly & Co., 119 F.3d 1559 (Fed. Cir. 1997), (United States Court of Appeals, Federal Circuit Jul 22, 1997). 19. In re Ruschig, 343 F.2d 965 (C.C.P.A. 1965), (United States Court of Customs and Patent Appeals Apr 22, 1965). 20. Rengo Co. Ltd. v. Molins Mach. Co., 657 F.2d 535 (3d Cir. 1981), (United States Court of Appeals, Third Circuit Jul 20, 1981). 21. Evans v. Eaton, 20 U.S. (7 Wheat.) 356 (1822). (U.S.).
描述 碩士
國立政治大學
法律科際整合研究所
106652002
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0106652002
資料類型 thesis
dc.contributor.advisor 沈宗倫zh_TW
dc.contributor.advisor Shen, Chung-Lunen_US
dc.contributor.author (作者) 王羿雯zh_TW
dc.contributor.author (作者) Wang, Yi-Wenen_US
dc.creator (作者) 王羿雯zh_TW
dc.creator (作者) Wang, Yi-Wenen_US
dc.date (日期) 2024en_US
dc.date.accessioned 4-十月-2024 11:04:43 (UTC+8)-
dc.date.available 4-十月-2024 11:04:43 (UTC+8)-
dc.date.issued (上傳時間) 4-十月-2024 11:04:43 (UTC+8)-
dc.identifier (其他 識別碼) G0106652002en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/153921-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 法律科際整合研究所zh_TW
dc.description (描述) 106652002zh_TW
dc.description.abstract (摘要) 本文主要分為三大部分,內容涵蓋基因科技、美國專利法書面說明要件的判決發展演變,以及對臺灣專利法的影響和建議。 第一部分:介紹DNA、RNA和基因結構的基本背景知識,隨後,深入探討基因定序技術的發展歷程,以及各世代定序技術的差異。另外,延伸至抗原抗體領域,介紹抗體與抗原之間的作用和機制,並探討最新的免疫治療技術。這些技術展現生物醫藥領域的進展,及抗原抗體藥物在臨床治療中的應用。 第二部分:分析美國專利法第35章第112條的內容和影響,尤其針對第(a)項「書面說明要件(Written Description)」的法律解釋與實務操作。這一部分詳細回顧相關經典案例,分析這些判決對專利申請的具體影響,特別是抗原抗體領域的專利案件。透過這些案例,探討原告、被告在專利訴訟中的主要論點和法院的裁判思考,並分析判決如何影響專利說明書的撰寫和實務操作。 第三部分:回顧上述判決對美國生技產業實務影響,並討論臺灣專利法是否應採行「書面說明要件」。倘若引入「書面說明要件」的優缺點,探討對臺灣專利法第26條「書面說明要件」的潛在影響,及對生技產業的衝擊。考量到國際接軌需要,本部分將提出對臺灣專利法的建議,討論如何在不破壞現有法律體系的前提下,引入該要件以提升專利保護的完整性和專利審查有效性。 最後總結將對「書面說明要件」提出建議,期望在生技醫藥產業發展、抗原抗體技術領域和專利法規範三者間達成最佳的協調與平衡。希望本文能促進臺灣專利法國際化,提升專利保護效能,並推動生技產業進一步發展。zh_TW
dc.description.abstract (摘要) This thesis was divided into three main sections, covering gene technology, the evolution of suitcases regarding the written description requirement under U.S. patent law, and its impact on Taiwan’s patent law. First Section: It introduced the basic background knowledge of DNA, RNA, and gene structure, followed by an in-depth exploration of the development history of gene sequencing technologies and the differences among various generations of sequencing methods. Additionally, it extended into the field of antigens and antibodies, explaining the interactions and mechanisms between antibodies and antigens, and discussing the latest advancements in clinical immunotherapy. These technologies highlighted progress in the biomedicine field and the clinical applications of antibody drugs. Second Section: It analyzed the content and impact of Article 112 of Chapter 35 of U.S. patent law, particularly focusing on the section (a), the “written description requirement.” This section provided a detailed review of classic cases, examining how these rulings specifically affect patent applications, especially in the field of antibody-antigen patents. Through these cases, it explored the main arguments of plaintiffs and defendants in patent litigation, the court’s reasoning, and how the rulings influence the drafting of patent descriptions and practical operations. Third Section: It reviewed the influence on the afore-mentioned rulings on the U.S. biotech industry and discussed whether Taiwan’s patent law should adopt the “written description requirement.” It considered the pros and cons of introducing this requirement and explored its potential effects on Article 26 of Taiwan’s patent law regarding “written description"or not. Given the need for international pace, this section offered suggestions for Taiwan’s patent law, discussing how to introduce this requirement without revising the existing article to enhance the integrity of patent protection and the effectiveness of patent examination. Finally, the conclusion provided suggestions on the “written description", aiming to achieve optimal coordination and balance among the development of the biomedical industry, the field of antigen-antibody technology, and patent regulation. It hoped to promote the internationalization of Taiwan’s patent law, enhance the effectiveness of patent protection, and further drive the development of the biotech industry.en_US
dc.description.tableofcontents 中文摘要 I Abstract II 第一節 研究動機及目的 1 第二節 研究範圍與方法 3 第三節 研究架構與內容 3 第二章 基因科技 5 第一節 基因科技名詞解釋 5 第二節 基因定序科技之發展 7 第一項 第一代定序 7 第二項 次世代定序 8 第三項 第三代定序 10 第三節 精準醫療 11 第一項 定義 12 第二項 發展 13 第三項 臨床應用 13 第四節 抗原抗體藥物背景介紹 15 第一項 免疫學名詞解釋 15 第二項 抗體藥物與技術發展 17 第三項 癌症免疫治療 22 第四項 免疫藥物與治療之專利爭議 35 第五節 小結 37 第三章 美國專利法第112條第(A)項書面說明要件 39 第一節 美國專利法第112條介紹 39 第二節 書面說明要件判決綜覽 42 第一項 Evans v. Eaton案 42 第二項 In re Ruschig案 43 第三節 生物技術領域書面說明要件判決演變 45 第一項 生物技術領域之特性 45 第二項 Amgen, Inc. v. Chugai Pharmaceutical, Co. LTD案 46 第三項 Fiers v. Revel 案 49 第四項 Regents of the University of California v. Eli Lilly & Co.案 52 第五項 Ariad Pharms, Inc. v. Eli Lilly & Co.案 55 第四節 書面說明要件適用解釋與測試法 59 第一項 文義解釋 59 第二項 歷史解釋 61 第三項 代表性物種測試法 63 第四項 希望或計畫測試法 64 第五節 小結 64 第四章 抗原抗體技術領域書面說明要件判決與審查 66 第一節 抗原抗體判決專利演變 66 第一項 Hybritech Inc. v. Monoclonal Antibodies, Inc. 案 67 第二節 新特徵抗原測試法案例 72 第一項 Noelle v. Lederman 案 72 第二項 Capon v. Eshhar 案 77 第三項 Centocor Ortho Biotech Inc. v. Abbott Labs 案 82 第四項 Abbvie Deutschland GMBH v. Janssen Biotech, Inc. 案 89 第三節 代表性物種測試法案例 94 第一項 Amgen Inc. v. Sanofi 案 94 第二項 Juno Therapeutics, Inc. v. Novartis International AG 案 99 第三項 Juno Therapeutics, Inc. v. Kite Pharma, Inc. 案 102 第二節 小結 106 第五章 書面說明要件在我國專利法之實踐 108 第一節 美國、歐盟 108 第二節 臺灣 113 第三節 臺灣專利法第26條之審查討論 115 第一項 美國現況 115 第二項 臺灣專利法第26條實務判決與學說現況 118 第三項 生技產業影響 129 第四節 小結 130 第六章 結論 132 參考文獻 134zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0106652002en_US
dc.subject (關鍵詞) 生物科技zh_TW
dc.subject (關鍵詞) 美國專利法zh_TW
dc.subject (關鍵詞) 書面說明要件zh_TW
dc.subject (關鍵詞) 抗原抗體技術zh_TW
dc.subject (關鍵詞) 專利應用zh_TW
dc.subject (關鍵詞) Biological Technologyen_US
dc.subject (關鍵詞) U.S. Patent Lawen_US
dc.subject (關鍵詞) Written Description Requirementen_US
dc.subject (關鍵詞) Antigen-Antibody Technologyen_US
dc.subject (關鍵詞) Patent Applicationen_US
dc.title (題名) 生物技術專利申請之書面說明要件―以抗原抗體技術領域判決為中心zh_TW
dc.title (題名) Written Description in Biological Technology Patent Application―Focusing on the Judgments in the Field of Antigen and Antibody Technologyen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、 中文(依姓氏筆畫排序) (一) 期刊論著 1. 王安志,以Amgen Inc. v. Sanofi案論美國專利申請案之可據以實施要件,聖島智慧財產專業團體實務報導,第26期,2024年 2. 王偉霖、廖健翔,美國專利法書面說明要件之研究,科技法學論叢,201401(第9期),頁167-207,2014年1月 3. 吳宏亮,一種請求項是否為說明書所支持的審查標準—要件除去原則之探究與引用,智慧財產月刊,第198期,頁91-122,2015年5月 4. 吳佩諄、張茜毓、黃教威、陳世芹、張維纓、林佳慧,抗體相關發明之專利審查實務分析,智慧財產權月刊,第258期,頁6-39,2020年6月 5. 吳俊男、蔡敏鈴,PCSK9 inhibitor 的簡介,藥學雜誌,第32期,2016年6月 6. 李秉燊,美國專利書面說明要件判決對生技產業的潛在影響――以抗體技術領域為中心,智慧財產權月刊,第253期,頁54-71,2020年 7. 沈宗倫,抗體相關發明下專利「可據以實現要件」之再詮釋 -以美國聯邦最高法院Amgen Inc. v. Sanofi一案為思考起,台灣法律人, 第33期,頁34-52,2024年3月 8. 許育瑋、蔡佩芬,免疫療法的絆腳石:irAEs,藥學雜誌電子報,第36期,2020年3月 9. 許育瑋、蔡佩芬,基因療法的新藍海:CAR-T,藥學雜誌電子報,第34期,2018年12月 10. 陳秉訓,美國專利訴訟制度:以專利有效性問題為中心,智慧財產權月刊,第131期,頁67-101,2009年6月 11. 陳雅珊、沈家瑞,2018諾貝爾醫學獎――抗癌大躍進,科學發展,第557期,頁48-53,2019年5月 12. 馮震宇,從專利到營業秘密──智財保護新趨勢顯現,月旦會計實務研究,第15期,頁72-79,2019年3月 13. 黃麗榕,揭開抗血小板藥物的新頁―Abciximab,藥學雜誌 ,第14卷第3期,1998年 14. 葉舜華、歐師維,抗體專利之說明書揭露-從美國 Centocor Ortho Biotech, Inc. v. Abbott Laboratories 案談起,專利師,第8期,頁72-81,2012年 15. 簡玉如,抗體專利的可據以實施要件-由美國最高法院 Amgen v. Sanofi 案最終判決談起,雙週專利電子報,第339期,2023年12月 (二) 網路資料 1. 李林璦,英國第三代定序開發商Oxford Nanopore 倫敦IPO首日飆漲45% 市值達68.4億美元, Global Bio & Investment 環球生技(2021),available at https://news.gbimonthly.com/tw/article/show.php?num=43360 2. 林書毅、鄭志玲,美國:AbbVie 抗體專利不符書面揭露要件被判無效,惇安律師事務所(2014) , available at https://www.lawbank.com.tw/news/NewsContent.aspx?NID=122621. 3. 施雅薰,CAR-T細胞治療產品Yescarta美國專利侵權訴訟逆轉勝,CAFC認定專利不符書面說明要件而無效, 財團法人資訊工業策進會科技法律研究所(2021), available at https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8720. 4. 葉雲卿、張連成,CAR-T免疫療法的演變、核准與專利戰, May, 26,2021(2021), available at http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Biotechnology/IPNC_210526_1101.htm 5. 衛生福利部中央健康保險署, 111年各類癌症健保前10大醫療支出統計(112.04.06新增)(2023) , available at https://www.nhi.gov.tw/ch/cp-6018-9886a-3042-1.html. 6. 衛生福利部國民健康署癌症防治組,公布110年國人癌症登記資料分析結果 五癌篩檢定期做 早發現早治療(2023),available at https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4705&pid=17641. 7. 羅傑,書面說明是專利之獨立要件, 國家實驗研究員科技政策研究與資訊中心―科技產業資訊室 (iKnow)(2011) , available at https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=6410. (三) 判決 1. 智慧財產法院108年度行專訴字第59號判決,(智慧財產法院 Mar. 31, 2020). 2. 智慧財產及商業法院110年度民專訴字第37號民事判決,(智慧財產及商業法院 Mar. 31, 2023). 3. 最高行政法院111年度上字第896號判決,(最高行政法院 Jan. 25, 2024). 二、 英文 (一) 期刊論著 1. A license to print money?, 24 NAT BIOTECHNOL (2006). 2. A. C. Anderson, et al., Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation, 44 IMMUNITY (2016). 3. A. D. Waldman, et al., A guide to cancer immunotherapy: from T cell basic science to clinical practice, 20 NAT REV IMMUNOL (2020). 4. A. F. Labrijn, et al., Bispecific antibodies: a mechanistic review of the pipeline, 18 NAT REV DRUG DISCOV (2019). 5. A. Gupta, et al., Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab, 385 N ENGL J MED (2021). 6. A. J. Bannister & T. Kouzarides, Regulation of chromatin by histone modifications, 21 CELL RES (2011). 7. A. Nisonoff, et al., Properties of the major component of a peptic digest of rabbit antibody, 132 SCIENCE (1960). 8. A. Pedrioli & A. Oxenius, Single B cell technologies for monoclonal antibody discovery, 42 TRENDS IMMUNOL (2021). 9. ALAN WOLFFE, CHROMATIN: STRUCTURE AND FUNCTION (Academic press. 1998). 10. Bharat B. Aggarwal & Jan Vilček, Tumor necrosis factors : structure, function, and mechanism of action (M. Dekker 1992). 11. C. J. Workman, et al., Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3, 169 J IMMUNOL (2002). 12. C. Zhang, et al., Engineering CAR-T cells, 5 BIOMARK RES (2017). 13. Chinmoy K. Bose & Soma Mukhopadhyay, Combined positive score (CPS) for scoring PD-L1 positivity, 5 CANCER RESEARCH, STATISTICS, AND TREATMENT (2022). 14. D. J. Shealy, et al., Anti-TNF-alpha antibody allows healing of joint damage in polyarthritic transgenic mice, 4 ARTHRITIS RES (2002). 15. D. Jorgovanovic, et al., Roles of IFN-gamma in tumor progression and regression: a review, 8 BIOMARK RES (2020). 16. Darlene M.J. Staines, THE PATENT WRITTEN DESCRIPTION REQUIREMENT: A REQUIREMENT IN SEARCH OF A DESCRIPTION, 92 FORDHAM LAW REVIEW 1195(2023). 17. Dennis Crouch, AN EMPIRICAL STUDY OF THE ROLE OF THE WRITTEN DESCRIPTION REQUITEMENT IN PATENT EXAMINATION, 104 NORTHWESTERN UNIVERSITY LAW REVIEW COLLOQUY 382(2010). 18. E. A. Carswell, et al., An endotoxin-induced serum factor that causes necrosis of tumors, 72 PROC NATL ACAD SCI U S A (1975). 19. E. Baulu, et al., TCR-engineered T cell therapy in solid tumors: State of the art and perspectives, 9 SCI ADV (2023). 20. E. Dolgin, The most popular genes in the human genome, 551 NATURE (2017). 21. E. I. Buchbinder & A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition, 39 AM J CLIN ONCOL (2016). 22. E. R. S. Cliff, et al., High Cost of Chimeric Antigen Receptor T-Cells: Challenges and Solutions, 43 AM SOC CLIN ONCOL EDUC BOOK (2023). 23. F. S. Hodi, et al., Improved survival with ipilimumab in patients with metastatic melanoma, 363 N ENGL J MED (2010). 24. G. Kohler & C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, 256 NATURE (1975). 25. H. H. Fudenberg, et al., Serologic Demonstration of Dual Specificity of Rabbit Bivalent Hybrid Antibody, 119 J EXP MED (1964). 26. H. Sung, et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, 71 CA CANCER J CLIN (2021). 27. H. T. Naismith Idriss, J. H., TNF alpha and the TNF receptor superfamily: structure-function relationship(s), 50 MICROSC RES TECH (2000). 28. Initiative Arabidopsis Genome, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, 408 NATURE (2000). 29. International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome, 431 NATURE (2004). 30. J. A. Marin-Acevedo, et al., Next generation of immune checkpoint therapy in cancer: new developments and challenges, 11 J HEMATOL ONCOL (2018). 31. J. B. Gibbons, et al., Humira: the first $20 billion drug, 29 AM J MANAG CARE (2023). 32. J. C. Alwine, et al., Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes, 74 PROC NATL ACAD SCI U S A (1977). 33. J. E. Rosenberg, et al., Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, 387 LANCET (2016). 34. J. Gao, et al., VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer, 23 NAT MED (2017). 35. J. Gong, et al., Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations, 6 J IMMUNOTHER CANCER (2018). 36. J. Liu, et al., Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses, 112 PROC NATL ACAD SCI U S A (2015). 37. J. Liu, et al., Interleukin-12: an update on its immunological activities, signaling and regulation of gene expression, 1 CURR IMMUNOL REV (2005). 38. J. Liu, et al., PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy, 12 FRONT PHARMACOL (2021). 39. J. M. Chauvin & H. M. Zarour, TIGIT in cancer immunotherapy, 8 J IMMUNOTHER CANCER (2020). 40. J. M. Chauvin, et al., TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients, 125 J CLIN INVEST (2015). 41. J. M. Krueger, et al., Sleep. A physiologic role for IL-1 beta and TNF-alpha, 856 ANN N Y ACAD SCI (1998). 42. J. Ma, et al., Bispecific Antibodies: From Research to Clinical Application, 12 FRONT IMMUNOL (2021). 43. J. McCafferty, et al., Phage antibodies: filamentous phage displaying antibody variable domains, 348 NATURE (1990). 44. J. Nam, Son, S., Park, K., et al., Cancer nanomedicine for combination cancer immunotherapy, 4 NATURE REVIEWS MATERIALS (2019). 45. J. Vilcek & T. H. Lee, Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions, 266 J BIOL CHEM (1991). 46. J.R. CROWTHER, THE ELISA GUIDEBOOK: SECOND EDITION (Humana Press. 2010). 47. Jill U. Adams, DNA sequencing technologies, 1(1):193 NATURE EDUCATION (2008). 48. John Powderly, et al., Interim results of an ongoing Phase I, dose escalation study of MGA271 (Fc-optimized humanized anti-B7-H3 monoclonal antibody) in patients with refractory B7-H3-expressing neoplasms or neoplasms whose vasculature expresses B7-H3, 3 JOURNAL FOR IMMUNOTHERAPY OF CANCER (2015). 49. JS Bonde; L Bülow, Brenner's Encyclopedia of Genetics, 2013. 50. K. Kulangara, et al., Clinical Utility of the Combined Positive Score for Programmed Death Ligand-1 Expression and the Approval of Pembrolizumab for Treatment of Gastric Cancer, 143 ARCH PATHOL LAB MED (2019). 51. K. L. Knutson & M. L. Disis, Tumor antigen-specific T helper cells in cancer immunity and immunotherapy, 54 CANCER IMMUNOL IMMUNOTHER (2005). 52. K. R. Kumar, et al., Next-Generation Sequencing and Emerging Technologies, 45 SEMIN THROMB HEMOST (2019). 53. L. A. Raedler, Keytruda (Pembrolizumab): First PD-1 Inhibitor Approved for Previously Treated Unresectable or Metastatic Melanoma, 8 AM HEALTH DRUG BENEFITS (2015). 54. L. Olsson & H. S. Kaplan, Human-human hybridomas producing monoclonal antibodies of predefined antigenic specificity, 77 PROC NATL ACAD SCI U S A (1980). 55. L. Sun, et al., Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease, 75 CYTOKINE (2015). 56. Li Di; Edward H. Kerns, Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization (Elsevier Inc. Second ed. 2016).. 57. Liam Drew, How does a cancer vaccine work?, 627 NATURE 834(2024). 58. M. A. Quail, et al., A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers, 13 BMC GENOMICS (2012). 59. M. A. Wride & E. J. Sanders, Potential roles for tumour necrosis factor alpha during embryonic development, 191 ANAT EMBRYOL (BERL) (1995). 60. M. Chmielewski & H. Abken, TRUCKs: the fourth generation of CARs, 15 EXPERT OPIN BIOL THER (2015). 61. M. D. Adams, et al., The genome sequence of Drosophila melanogaster, 287 SCIENCE (2000). 62. M. Das, et al., Tim-3 and its role in regulating anti-tumor immunity, 276 IMMUNOL REV (2017). 63. M. E. Frankel & W. Gerhard, The rapid determination of binding constants for antiviral antibodies by a radioimmunoassay. An analysis of the interaction between hybridoma proteins and influenza virus, 16 MOL IMMUNOL (1979). 64. M. H. Park & J. T. Hong, Roles of NF-kappaB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches, 5 CELLS (2016). 65. M. J. Mendez, et al., Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice, 15 NAT GENET (1997). 66. M. M. Mohammadi & O. Bavi, DNA sequencing: an overview of solid-state and biological nanopore-based methods, 14 BIOPHYS REV (2022). 67. M. O. Pollard, et al., Long reads: their purpose and place, 27 HUM MOL GENET (2018). 68. M. Reck, et al., Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer, 375 N ENGL J MED (2016). 69. M. V. Goldberg & C. G. Drake, LAG-3 in Cancer Immunotherapy, 344 CURR TOP MICROBIOL IMMUNOL (2011). 70. M. Z. Wojtukiewicz, et al., Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners, 40 CANCER METASTASIS REV (2021). 71. Margaret Sampson, The Evolution of the Enablement and Written Description Requirements Under 35 U.S.C. § 112 in the Area of Biotechnology, 15 BERKELEY TECHNOLOGY LAW JOURNAL 1233(2000). 72. MARK A . LEMLEY & JACOBS . SHERKOW, The Antibody Patent Paradox, 132 THE YALE LAW JOURNAL 994(2023). 73. N. Biswas, et al., Designing neoantigen cancer vaccines, trials, and outcomes, 14 FRONT IMMUNOL (2023). 74. N. C. Ward, et al., IL-2/CD25: A Long-Acting Fusion Protein That Promotes Immune Tolerance by Selectively Targeting the IL-2 Receptor on Regulatory T Cells, 201 J IMMUNOL (2018). 75. N. Lonberg, et al., Antigen-specific human antibodies from mice comprising four distinct genetic modifications, 368 NATURE (1994). 76. N. Lonberg, Fully human antibodies from transgenic mouse and phage display platforms, 20 CURR OPIN IMMUNOL (2008). 77. N. Sobhani, et al., CTLA-4 in Regulatory T Cells for Cancer Immunotherapy, 13 CANCERS (BASEL) (2021). 78. N. Watanabe & M. K. McKenna, Generation of CAR T-cells using gamma-retroviral vector, 167 METHODS CELL BIOL (2022). 79. P. B. Medawar, The behaviour and fate of skin autografts and skin homografts in rabbits: A report to the War Wounds Committee of the Medical Research Council, 78 J ANAT (1944). 80. P. De Marchi, et al., PD-L1 expression by Tumor Proportion Score (TPS) and Combined Positive Score (CPS) are similar in non-small cell lung cancer (NSCLC), 74 J CLIN PATHOL (2021). 81. P. J. Delves & I. M. Roitt, The immune system. First of two parts, 343 N ENGL J MED (2000). 82. P. Schmid, et al., Pembrolizumab for Early Triple-Negative Breast Cancer, 382 N ENGL J MED (2020). 83. P. T. Jones, et al., Replacing the complementarity-determining regions in a human antibody with those from a mouse, 321 NATURE (1986). 84. P.J. FEDERICO, The Patent Trials of Oliver Evans, 27 JOURNAL OF THE PATENT OFFICE SOCIETY 657(1945). 85. Paul Verdin, Top product forecasts for 2024, 23 NATURE REVIEWS DRUG DISCOVERY 13(2024). 86. Pu-Cheng (Leo) Huang, A Decade After Ariad: What is the Written Description Standard for Emerging Bio-Pharma Patents?, 17 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS 131(2022). 87. R. E. Billingham, et al., Quantitative studies on tissue transplantation immunity. II. The origin, strength and duration of actively and adoptively acquired immunity, 143 PROC R SOC LOND B BIOL SCI (1954). 88. R. E. Tay, et al., Revisiting the role of CD4(+) T cells in cancer immunotherapy-new insights into old paradigms, 28 CANCER GENE THER (2021). 89. R. M. Lu, et al., Development of therapeutic antibodies for the treatment of diseases, 27 J BIOMED SCI (2020). 90. R. S. Herbst, et al., Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC, 383 N ENGL J MED (2020). 91. S. A. Rosenberg, Adoptive immunotherapy for cancer, 262 SCI AM (1990). 92. S. Chhangawala, et al., The impact of read length on quantification of differentially expressed genes and splice junction detection, 16 GENOME BIOL (2015). 93. S. Feins, et al., An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer, 94 AM J HEMATOL (2019). 94. S. J. Keam, Tremelimumab: First Approval, 83 DRUGS (2023). 95. S. L. Amarasinghe, et al., Opportunities and challenges in long-read sequencing data analysis, 21 GENOME BIOL (2020). 96. S. L. Maude, et al., Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia, 378 N ENGL J MED (2018). 97. S. M. Albelda, CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn, 21 NAT REV CLIN ONCOL (2024). 98. S. Sean Tu & Christopher M. Holman, Antibody Patents: Use of the Written Description and Enablement Requirements at the Patent & Trademark Office, 38 BERKELEY TECHNOLOGY LAW JOURNAL 1(2023). 99. S. SEAN TU; CHRISTOPHER M. HOLMAN, ANTIBODY CLAIMS AND THE EVOLUTION OF THE WRITTEN DESCRIPTION/ENABLEMENT REQUIREMENT, 63 IDEA – THE LAW REVIEW OF THE FRANKLIN PIERCE CENTER FOR IP 84(2021). 100. S. Van Coillie, et al., Molecular and Cellular Functions of CTLA-4, 1248 ADV EXP MED BIOL (2020). 101. T. B. Gibson, et al., Randomized phase III trial results of panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody, in metastatic colorectal cancer, 6 CLIN COLORECTAL CANCER (2006). 102. T. Miyazaki, et al., LAG-3 is not responsible for selecting T helper cells in CD4-deficient mice, 8 INT IMMUNOL (1996). 103. W. S. Pearman, et al., Testing the advantages and disadvantages of short- and long- read eukaryotic metagenomics using simulated reads, 21 BMC BIOINFORMATICS (2020). 104. W. Tang, et al., TIGIT, a novel immune checkpoint therapy for melanoma, 14 CELL DEATH DIS (2023). 105. W. W. Deng, et al., LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma, 5 ONCOIMMUNOLOGY (2016). 106. X. Deng, et al., Enhancing antibody patent protection using epitope mapping information, 10 MABS (2018). 107. Y. A. Heo, Sotrovimab: First Approval, 82 DRUGS (2022). 108. Y. He, et al., Lymphocyte-activation gene-3, an important immune checkpoint in cancer, 107 CANCER SCI (2016). 109. Y. Kuwana, et al., Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions, 149 BIOCHEM BIOPHYS RES COMMUN (1987). 110. Z. Wang, et al., Development of therapeutic antibodies for the treatment of diseases, 3 MOL BIOMED (2022). (二) 網路資料 1. About the Cancer Moonshot℠, National Cancer Institute(2023), available at https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative/about. 2. ACE Biolabs, ELISA原理介紹, available at https://www.acebiolab.com/TW/news/40. 3. Arsalan M. Safiullah, Functional Claiming of Broad Genus Potentially Including Millions of Antibodies Rejected by U.S. Supreme Court, Osha Bergman Watanabe & Burton LLP(2023), available at https://www.obwb.com/newsletter/functional-claiming-of-broad-genus-potentially-including-millions-of-antibodies-rejected-by-us-supreme-court. 4. Binod Pokhrel; Mark V. Pellegrini; Steven N. Levine., PCSK9 Inhibitors, StatPearls [Internet]. Treasure Island (FL)(2024), available at https://www.ncbi.nlm.nih.gov/books/NBK448100/. 5. Bruce Booth, Human Antibody Discovery: Of Mice And Phage, Forbes(2017), available at https://www.forbes.com/sites/brucebooth/2017/05/11/human-antibody-discovery-of-mice-and-phage/#33a300977f26. 6. Cancer Moonshot℠ - Recent Fiscal Year Funding(2023), available at https://www.cancer.gov/about-nci/budget/fact-book/cancer-moonshot. 7. Charles E. Lipsey, Litigation of the Written Description, FINNEGAN(2005), available at https://www.finnegan.com/en/insights/articles/litigation-of-the-written-description.html. 8. Creative Biolabs, scFv Fragment Antibody, available at https://www.creativebiolabs.net/scfv-fragment-antibodies_25.htm. 9. Emily M. Hartsough Meghan Lindstrom, Pawel Mroz., NGS-general(2023), available at https://www.pathologyoutlines.com/topic/molecularnextgensequencing.html. 10. MD Alpana Mohta, Understanding Hybridoma Technology for Monoclonal Antibody Production, The Scientist(2023), available at https://www.the-scientist.com/understanding-hybridoma-technology-for-monoclonal-antibody-production-71108. 11. Michael Franzinger;Kevin Greenleaf, Key Takeaways from the USPTO’s New Guidance on Written Description and Enablement, DENTONS(2024), available at https://www.dentons.com/en/insights/alerts/2024/january/12/key-takeaways-from-the-usptos-new-guidance-on-written-description-and-enablement. 12. NobelPrize.org., The Nobel Prize in Chemistry 1980(1980), available at https://www.nobelprize.org/prizes/chemistry/1980/summary/. 13. NobelPrize.org., The Nobel Prize in Physiology or Medicine 1962., available at https://www.nobelprize.org/prizes/medicine/1962/summary/. 14. Patrick Saad; Anup Kasi., Ipilimumab., 2023 Apr 10(2023), available at https://www.ncbi.nlm.nih.gov/books/NBK557795/. 15. Paul W. Browning; Denise Main; Pier D. DeRoo, A Closer Look at the Post-Ariad Written Description Requirement(2012), available at https://www.finnegan.com/en/insights/articles/a-closer-look-at-the-post-ariad-written-description-requirement.html. 16. Press release.NobelPrize.org., Nobel Prize Outreach AB 2024(1984), available at https://www.nobelprize.org/prizes/medicine/1984/press-release/. 17. Samantha Handler, Biogen’s Rehearing Denial Lays New Hurdles for Pharma Patents, BLOOMBERG LAW(2022), available at https://news.bloomberglaw.com/ip-law/biogens-rehearing-denial-lays-new-hurdles-for-pharma-patents. 18. Sir Gregory P. Winter – Biographical. NobelPrize.org., Nobel Prize Outreach AB 2024.(2018), available at https://www.nobelprize.org/prizes/chemistry/2018/winter/biographical/. 19. The Nobel Prize in Physiology or Medicine 2018. NobelPrize.org., Nobel Prize Outreach AB 2024.(2018), available at https://www.nobelprize.org/prizes/medicine/2018/summary/. 20. Trianni Inc., Whitepaper: Transgenic Mice: Transforming Targeted Monoclonal Antibody (mAb) Therapeutics(2017), available at http://trianni.com/wp-content/uploads/2016/09/Trianni-mAb-Whitepaper_e_sept12.pdf. 21. Trupti Wadekar; Digvijay Gawali; Roshan Deshmukh, CAR T-Cell Therapy Market Size, Share, Competitive Landscape and Trend Analysis Report by Drug type, by Indication, by End user : Global Opportunity Analysis and Industry Forecast, 2023-2032, Allied Market Research(2023), available at https://www.alliedmarketresearch.com/car-t-cell-therapy-market-A16971. (三) 判決 1. Abbvie Deutschland GmbH & Co., KG v. Janssen Biotech, Inc., 759 F.3d 1285 (Fed. Cir. 2014), (United States Court of Appeals, Federal Circuit. Jul 1, 2014). 2. Application of Storrs., 245 F.2d 474 (C.C.P.A. 1957), (United States Court of Customs and Patent Appeals Jun 17, 1957). 3. Capon v. Eshhar., 418 F.3d 1349 (Fed. Cir. 2005), (United States Court of Appeals, Federal Circuit Aug 12, 2005). 4. Centocor Ortho Biotech v. Abbott Lab., 636 F.3d 1341 (Fed. Cir. 2011), (United States Court of Appeals, Federal Circuit Feb 23, 2011). 5. Festo Corp. v. Shoketsu Kinzoku Kogyo Kabushiki Co., 535 U.S. 722 (2002), (U.S. Supreme Court May 28, 2002). 6. Hybritech Inc. v. Monoclonal Antibodies, Inc., 802 F.2d 1367 (Fed. Cir. 1986), (United States Court of Appeals, Federal Circuit Sep 19, 1986). 7. In re Wands., 858 F.2d 731 (Fed. Cir. 1988), (United States Court of Appeals, Federal Circuit Sep 30, 1988). 8. Juno Therapeutics, Inc. v. Kite Pharma, Inc., 10 F.4th 1330 (Fed. Cir. 2021), (United States Court of Appeals, Federal Circuit Aug 26, 2021). 9. Montclair v. Ramsdell, 107 U.S. 147 (1883), (U.S. Supreme Court March 5, 1883). 10. Noelle v. Lederman., 355 F.3d 1343 (Fed. Cir. 2004), (United States Court of Appeals, Federal Circuit Jan 20, 2004). 11. O'Reilly v. Morse, 56 U.S. 15 How. 62 62 (1853), (U.S. Supreme Court January 30, 1854). 12. Schriber-Schroth Co. v. Cleveland Trust Co., 305 U.S. 47 (1938), (U.S. Supreme Court November 7, 1938). 13. Trs. of the Univ. of Pa. v. St. Jude Children's Research Hosp., 982 F. Supp. 2d 518 (E.D. Pa. 2013), (UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF PENNSYLVANIA Nov 13, 2013). 14. Ariad Pharmaceuticals, Inc. v. Eli Lilly & Co., 598 F.3d 1336 (Fed. Cir. 2010) (en banc), (United States Court of Appeals for the Federal Circuit March 22, 2010). 15. In re Ruschig, 379 F.2d 990 (C.C.P.A. 1967), (United States Court of Customs and Patent Appeals Jun 22, 1967). 16. Amgen, Inc. v. Chugai Pharmaceutical Co. LTD, 927 F.2d 1200 (Fed. Cir. 1991), (United States Court of Appeals, Federal Circuit). 17. Fiers v. Revel, 984 F.2d 1164 (Fed. Cir. 1993), (United States Court of Appeals, Federal Circuit Jan 19, 1993). 18. Regents of the Univ. of Cal. v. Eli Lilly & Co., 119 F.3d 1559 (Fed. Cir. 1997), (United States Court of Appeals, Federal Circuit Jul 22, 1997). 19. In re Ruschig, 343 F.2d 965 (C.C.P.A. 1965), (United States Court of Customs and Patent Appeals Apr 22, 1965). 20. Rengo Co. Ltd. v. Molins Mach. Co., 657 F.2d 535 (3d Cir. 1981), (United States Court of Appeals, Third Circuit Jul 20, 1981). 21. Evans v. Eaton, 20 U.S. (7 Wheat.) 356 (1822). (U.S.).zh_TW