學術產出-期刊論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 A majority-based learning system for detecting misinformation
作者 杜雨儒
Tu, Yu-Ju;Kao, Hanchun;Huang, Yu-Hsiang (John);Strader, Troy
貢獻者 資管系
關鍵詞 Misinformation; fake news; detection; machine learning; majority-based
日期 2024-03
上傳時間 28-十月-2024 11:42:54 (UTC+8)
摘要 Combating misinformation is both a multifaceted problem and a pressing societal concern. In response, we propose a user-centric system founded on the majority vote model, offering flexibility and synergy in integrating established machine-learning methods or classifiers such as SVM, MLP, LSTM, RF, and XGB. Computational experiments demonstrate promising results in implementing our proposed system to identify text-based fake news, advertorials, and plagiarised information in social media. The dataset employed in these experiments is primarily sourced from volunteer contributors and fact-checking websites. The result evaluation indicators encompass balanced accuracy and F1 score. Overall, this study introduces a significant and autonomous countermeasure to address misinformation.
關聯 Behaviour & Information Technology, pp.1-15
資料類型 article
DOI https://doi.org/10.1080/0144929X.2024.2326562
dc.contributor 資管系
dc.creator (作者) 杜雨儒
dc.creator (作者) Tu, Yu-Ju;Kao, Hanchun;Huang, Yu-Hsiang (John);Strader, Troy
dc.date (日期) 2024-03
dc.date.accessioned 28-十月-2024 11:42:54 (UTC+8)-
dc.date.available 28-十月-2024 11:42:54 (UTC+8)-
dc.date.issued (上傳時間) 28-十月-2024 11:42:54 (UTC+8)-
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/154117-
dc.description.abstract (摘要) Combating misinformation is both a multifaceted problem and a pressing societal concern. In response, we propose a user-centric system founded on the majority vote model, offering flexibility and synergy in integrating established machine-learning methods or classifiers such as SVM, MLP, LSTM, RF, and XGB. Computational experiments demonstrate promising results in implementing our proposed system to identify text-based fake news, advertorials, and plagiarised information in social media. The dataset employed in these experiments is primarily sourced from volunteer contributors and fact-checking websites. The result evaluation indicators encompass balanced accuracy and F1 score. Overall, this study introduces a significant and autonomous countermeasure to address misinformation.
dc.format.extent 109 bytes-
dc.format.mimetype text/html-
dc.relation (關聯) Behaviour & Information Technology, pp.1-15
dc.subject (關鍵詞) Misinformation; fake news; detection; machine learning; majority-based
dc.title (題名) A majority-based learning system for detecting misinformation
dc.type (資料類型) article
dc.identifier.doi (DOI) 10.1080/0144929X.2024.2326562
dc.doi.uri (DOI) https://doi.org/10.1080/0144929X.2024.2326562