學術產出-期刊論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 Comparison of convolutional-neural-networks-based method and LCModel on the quantification of in vivo magnetic resonance spectroscopy
作者 蔡尚岳
Tsai, Shang-Yueh;Huang, Yu-Long;Lin, Yi-Ru
貢獻者 應物所
關鍵詞 Convolutional neural network; Magnetic resonance spectroscopy; Metabolite concentrations
日期 2024-07
上傳時間 28-十月-2024 13:15:36 (UTC+8)
摘要 Quantification of metabolites concentrations in institutional unit (IU) is important for inter-subject and long-term comparisons in the applications of magnetic resonance spectroscopy (MRS). Recently, deep learning (DL) algorithms have found a variety of applications on the process of MRS data. A quantification strategy compatible to DL base MRS spectral processing method is, therefore, useful.
關聯 Magnetic Resonance Materials in Physics, Biology and Medicine: Official Journal of the European Society for Magnetic Resonance in Medicine and Biology, Vol.37, pp.477-489
資料類型 article
DOI https://doi.org/10.1007/s10334-023-01120-z
dc.contributor 應物所
dc.creator (作者) 蔡尚岳
dc.creator (作者) Tsai, Shang-Yueh;Huang, Yu-Long;Lin, Yi-Ru
dc.date (日期) 2024-07
dc.date.accessioned 28-十月-2024 13:15:36 (UTC+8)-
dc.date.available 28-十月-2024 13:15:36 (UTC+8)-
dc.date.issued (上傳時間) 28-十月-2024 13:15:36 (UTC+8)-
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/154141-
dc.description.abstract (摘要) Quantification of metabolites concentrations in institutional unit (IU) is important for inter-subject and long-term comparisons in the applications of magnetic resonance spectroscopy (MRS). Recently, deep learning (DL) algorithms have found a variety of applications on the process of MRS data. A quantification strategy compatible to DL base MRS spectral processing method is, therefore, useful.
dc.format.extent 106 bytes-
dc.format.mimetype text/html-
dc.relation (關聯) Magnetic Resonance Materials in Physics, Biology and Medicine: Official Journal of the European Society for Magnetic Resonance in Medicine and Biology, Vol.37, pp.477-489
dc.subject (關鍵詞) Convolutional neural network; Magnetic resonance spectroscopy; Metabolite concentrations
dc.title (題名) Comparison of convolutional-neural-networks-based method and LCModel on the quantification of in vivo magnetic resonance spectroscopy
dc.type (資料類型) article
dc.identifier.doi (DOI) 10.1007/s10334-023-01120-z
dc.doi.uri (DOI) https://doi.org/10.1007/s10334-023-01120-z