學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 AI虛擬新聞主播擬人化程度對閱聽人的新聞態度與新聞觀看意圖之影響
The Impact of AI News Anchors’ Anthropomorphism on Audiences’ News Attitude and News-Watching Intentions
作者 張祺淯
Chang, Chi-Yu
貢獻者 林日璇
Lin, Jih-Husan
張祺淯
Chang, Chi-Yu
關鍵詞 人工智慧(AIET)
AI虛擬新聞主播
擬人化
外表吸引力
可信度
新聞態度
新聞觀看意圖
AI-enabled technology (AIET)
AI news anchor
anthropomorphism
attractiveness
trustworthiness
audience attitudes toward news
news-watching intentions
日期 2024
上傳時間 3-三月-2025 14:50:24 (UTC+8)
摘要 隨著人工智慧的快速變革與生成式AI突破性的技術發展,運用AI虛擬新聞主播來播報新聞,逐漸成為新聞媒體產業的重要趨勢之一,其中擬人化 (Anthropomorphism)被廣泛運用在AI虛擬新聞主播的外觀設計與表達方式上, 因此本研究旨在探討AI虛擬新聞主播的擬人化程度會如何影響閱聽人的新聞態度及新聞觀看意圖。 本研究採線上實驗法,以AI虛擬新聞主播的擬人化程度分為兩組:仿真人形象組與卡通化形象組的受試者間設計(between-subjects design),將外表吸引力(Attractiveness)作為中介變項、可信度(Trustworthiness)作為調節變項,此 次實驗ㄧ共有80位受試者。研究結果發現,AI虛擬新聞主播的擬人化程度與外 表吸引力呈正相關;且外表吸引力對閱聽人的新聞態度與新聞觀看意圖有顯著正向影響,此外,外表吸引力在擬人化程度與閱聽人新聞態度、新聞觀看意圖的關係中有中介效果,然而可信度在以上關係中並未具有調節效果。
With the rapid advancements in artificial intelligence and the breakthrough development of generative AI technologies, the use of AI virtual news anchors has emerged as a significant trend in the news media industry. Anthropomorphism is widely applied in the design and presentation of AI virtual news anchors. Therefore, this research aimed to investigate how the degree of anthropomorphism in AI news anchors influences audience attitudes toward news and their intentions to watch news. This study conducted an online experiment, categorizing AI news anchors into two groups based on the degree of anthropomorphism: a human-like image group and a cartoon-like image group, using a between-subjects design. Attractiveness was examined as a mediator variable, while trustworthiness served as a moderator variable. A total of 80 participants were recruited for this experiment. The findings indicate that higher levels of anthropomorphism in AI news anchors were positively associated with greater attractiveness. Attractiveness positively influenced audience attitudes toward news and their news-watching intentions. Furthermore, attractiveness mediated the relationship between the degree of anthropomorphism and both audience attitudes toward news and their news-watching intentions. However, trustworthiness did not exhibit a moderating effect within these relationships.
參考文獻 Aaker, D. A. (2006). Brand portfolio strategy. Strategic direction, 22(10). Aggarwal, P., & McGill, A. L. (2007). Is that car smiling at me? Schema congruity as a basis for evaluating anthropomorphized products. Journal of consumer research, 34(4), 468-479. Ajzen, I. and Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior, Englewood Cliffs. Bargh, J. A. (1984). Automatic and conscious processing of social information. In R. S. Wyer, Jr. & T. K. Srull (Eds.), Handbook of social cognition (Vol. 3, pp 1-43). Hillsdale, NJ: Lawrence Erlbaum Associates. Bartneck, C., Kanda, T., Ishiguro, H., & Hagita, N. (2009). My robotic doppelgänger-A critical look at the uncanny valley. In RO-MAN 2009-The 18th IEEE international symposium on robot and human interactive communication (pp. 269-276). IEEE. https://doi.org/10.1109/ROMAN.2009.5326351 Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International journal of social robotics, 1, 71-81. https://doi.org/10.1007/s12369-008-0001-3 Bawack, R. E., Fosso Wamba, S., & Carillo, K. D. A. (2019). Artificial intelligence in practice: Implications for IS research. In Proceedings of the 25th Americas Conference on Information Systems (AMCIS). Cancún, Mexico: Association for Information Systems. Benbasat, I., & Wang, W. (2005). Trust in and adoption of online recommendation agents. Journal of the Association for Information Systems, 6(3), 4. Blöbaum, B. (2016). Key factors in the process of trust. On the analysis of trust under digital conditions. Trust and communication in a digitized world: Models and concepts of trust research, 3-25. Chaiken, S. (1980). Heuristic Versus Systematic Information Processing and the Use of Source Versus Message Cues in Persuasion. Journal of Personality and Social Psychology, 39(5), 752. https://doi.org/10.1037/0022-3514.39.5.752 Chen, L., Gillenson, M. & Sherrell, D. (2002). Enticing Online Consumers: An Extended Technology Perspective. Information & Management,39(8), 705-719. https://doi.org/10.1016/S0378-7206(01)00127-6 Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334. De-Lima-Santos, M. F., & Ceron, W. (2021). Artificial intelligence in news media: current perceptions and future outlook. Journalism and media, 3(1), 13-26. https://doi.org/10.3390/journalmedia3010002 De Visser, E. J., Monfort, S. S., McKendrick, R., Smith, M. A., McKnight, P. E., Krueger, F., & Parasuraman, R. (2016). Almost human: Anthropomorphism increases trust resilience in cognitive agents. Journal of Experimental Psychology: Applied, 22(3), 331-349. https://doi.org/10.1037/xap0000092 Dion, K., Berscheid, E., & Walster, E. (1972). What is beautiful is good. Journal of personality and social psychology, 24(3), 285. https://doi.org/10.1037/h0033731 Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of marketing research, 28(3), 307-319. https://doi.org/10.1177/002224379102800305 Dubosc, C., Gorisse, G., Christmann, O., Fleury, S., Poinsot, K., & Richir, S. (2021). Impact of avatar facial anthropomorphism on body ownership, attractiveness and social presence in collaborative tasks in immersive virtual environments. Computers & Graphics, 101, 82-92. https://doi.org/10.1016/j.cag.2021.08.011 Duffy, B. R. (2003). Anthropomorphism and the social robot. Robotics and autonomous systems, 42(3-4), 177-190. Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: A three-factor theory of anthropomorphism. Psychological Review, 114(4), 864-886. https://doi.org/10.1037/0033-295X.114.4.864 Nur Fitria, T. (2024). Artificial Intelligence (AI) News Anchor: How AI’s Performance in Journalistic Sector?. iTELL Journal, 1(1), 29-42. https://itell.or.id/journal/index.php/itelljournal/article/view/4 Fishbein, M. and Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Gerlich, M. (2023). The Power of Virtual Influencers: Impact on Consumer Behaviour and Attitudes in the Age of AI. Administrative Sciences, 13(8), 178. https://doi.org/10.3390/admsci13080178 Goldberg, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345-420. https://doi.org/10.1613/jair.4992 Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157-169. https://doi.org/10.1016/j.ijinfomgt.2019.03.008 Ha, Q.-A., Chen, J. V., Uy, H. U., & Capistrano, E. P. (2021). Exploring the privacy concerns in using intelligent virtual assistants under perspectives of information sensitivity and anthropomorphism. International Journal of Human–Computer Interaction, 37(6), 512–527. https://doi.org/10.1080/10447318.2020.1834728 Hansen, M., Roca-Sales, M., Keegan, J. M., & King, G. (2017). Artificial intelligence: Practice and implications for journalism. Columbia University. http://dx.doi.org/10.7916/D8X92PRD Hovland, C. I., & Weiss, W. (1951). The influence of source credibility on communication effectiveness. Public opinion quarterly, 15(4), 635-650. Huang, Y., & Yu, Z. (2023). Understanding the continuance intention for artificial intelligence news anchor: Based on the expectation confirmation theory. Systems, 11(9), 438. https://doi.org/10.3390/systems11090438 Kang, S. H., & Watt, J. H. (2013). The impact of avatar realism and anonymity on effective communication via mobile devices. Computers in Human Behavior, 29(3), 1169-1181. https://doi.org/10.1016/j.chb.2012.10.010 Kiesler, S., & Goetz, J. (2002). Mental models of robotic assistants. In CHI'02 Extended Abstracts on Human Factors in Computing Systems, 576-577. https://doi.org/10.1145/506443.506491 Kim, A., Cho, M., Ahn, J., & Sung, Y. (2019). Effects of gender and relationship type on the response to artificial intelligence. Cyberpsychology, Behavior, and Social Networking, 22(4), 249-253. https://doi.org/10.1089/cyber.2018.0581 La Ferle, C., & Choi, S. M. (2005). The importance of perceived endorser credibility in South Korean advertising. Journal of Current Issues & Research in Advertising, 27(1), 67-81. https://doi.org/10.1080/10641734.2005.10505182 Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human factors, 46(1), 50-80. https://doi.org/10.1518/hfes.46.1.50_30392 Li, M., & Suh, A. (2021). Machinelike or Humanlike? A Literature Review of Anthropomorphism in AI-Enabled Technology. In 54th Hawaii International Conference on System Sciences. pp.4053-4062. https://doi.org/10.24251/HICSS.2021.493 Li, M., Suh, A. (2022). Anthropomorphism in AI-enabled technology: A literature review. Electron Markets 32, 2245–2275. https://doi.org/10.1007/s12525-022-00591-7 McGuire, W. J. (1985). Chapter attitudes and attitude change. Handbook of social psychology, 233-346. McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa... examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28–37. https://doi.org/10.1016/j.chb.2019.05.009 Moussawi, S., & Koufaris, M. (2019). Perceived intelligence and perceived anthropomorphism of personal intelligent agents: Scale development and validation. In Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS). Grand Wailea, Maui, United States: University of Hawaii at Manoa. Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2021). How perceptions of intelligence and anthropomorphism affect adoption of personal intelligent agents. Electronic Markets, 31(2), 343-364. https://doi.org/10.1007/s12525-020-00411-w Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley [from the field]. IEEE Robotics & automation magazine, 19(2), 98-100. Natarajan, M., & Gombolay, M. (2020). Effects of anthropomorphism and accountability on trust in human robot interaction. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (pp. 33–42). https://doi.org/10.1145/3319502.3374839. Niu, D., Terken, J., & Eggen, B. (2018). Anthropomorphizing information to enhance trust in autonomous vehicles. Human Factors and Ergonomics in Manufacturing & Service Industries, 28(6), 352-359. https://doi.org/10.1002/hfm.20745 Niu, L., & Weng, W. (2020). A Study on the Mode of Training Program for Broadcasting and Hosting Art Major in the Age of Artificial Intelligence. 2020 International Conference on Computers, Information Processing and Advanced Education (CIPAE), 335–337. https://doi.org/10.1109/cipae51077.2020.00089 Nowak, K. (2003). The effect of the agency and anthropomorphism on users’ sense of telepresence, copresence, and social presence in virtual environments. Presence: Teleoperators and Virtual Environments 2003; 12 (5): 481-494. https://doi.org/10.1162/105474603322761289 Ohanian, R. (1990). Construction and Validation of a Scale to Measure Celebrity Endorsers' Perceived Expertise, Trustworthiness, and Attractiveness. Journal of Advertising, 19(3), 39-52. https://doi.org/10.1080/00913367.1990.10673191 Patra, B., & Kumar, M. (2020). Natural Language Processing in Chatbots: A Review. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 2890-2894. Pitardi, V., & Marriott, H. R. (2021). Alexa, she's not human but… Unveiling the drivers of consumers' trust in voice‐based artificial intelligence. Psychology & Marketing, 38(4), 626-642. https://doi.org/10.1002/mar.21457 Pradhan, A., Mehta, K., & Findlater, L. (2018). “Accessibility came by accident” use of voice-controlled intelligent personal assistants by people with disabilities. 2018 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3173574.3174033 / Qi, M. (2021). Teaching Reform of Broadcasting and Presenter under the Background of Artificial Intelligence. Journal of Physics: Conference Series, 1881(2), 022061. https://doi.org/10.1088/1742-6596/1881/2/022061 Qiu, L., & Benbasat, I. (2009). Evaluating anthropomorphic product recommendation agents: A social relationship perspective to designing information systems. Journal of Management Information Systems, 25(4), 145-182. https://doi.org/10.2753/MIS0742-1222250405 Ranjan, R.K., & Kushwaha, R. (2017). Impact of green marketing strategies on consumer purchase behavior. Review of Management, 7(3/4), 9–22. Rzepka, C., & Berger, B. (2018). User interaction with AI-enabled systems: A systematic review of IS research. In Proceedings of the 29th International Conference on Information Systems (ICIS). San Francisco, CA, United States: Association for Information Systems. Salles, A., Evers, K., & Farisco, M. (2020). Anthropomorphism in AI. AJOB Neuroscience, 11(2), 88–95. https://doi.org/10.1080/21507740.2020.1740350 Schaefer, K. E., Chen, J. Y. C., Szalma, J. L., & Hancock, P. A. (2016). A meta-analysis of factors influencing the development of trust in automation: Implications for understanding autonomy in future systems. Human Factors, 58(3), 377-400. https://doi.org/10.1177/0018720816634228 Seeger, A. M., Pfeiffer, J., & Heinzl, A. (2021). Texting with humanlike conversational agents: Designing for anthropomorphism. Journal of the Association for Information systems, 22(4), 8. Son, Y., & Oh, W. (2018). Alexa, buy me a movie!: How AI speakers reshape digital content consumption and preference. 39th International Conference on Information Systems. Tripp, A., & Sherrill, C. (1991). Attitude theories of relevance to adapted physical education. Adapted Physical Activity Quarterly, 8(1), 12-27. https://doi.org/10.1123/apaq.8.1.12 Vaezi, Reza; Mills, Annette; Chin, Wynne; and Zafar, Humayun. (2016). User Satisfaction Research in Information Systems: Historical Roots and Approaches. Communications of the Association for Information Systems: Vol. 38, Article 27. DOI: 10.17705/1CAIS.03827 Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., & Wang, F. Y. (2017). Generative adversarial networks: introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4(4), 588-598. DOI: 10.1109/JAS.2017.7510583 Wang, Y. (2021). Research on the Application of AI Anchors in TV Media under the Background of Artificial Intelligence. In 2021 2nd International Conference on Artificial Intelligence and Information Systems (pp. 1-4). https://doi.org/10.1145/3469213.3470671 Wagner, K., Nimmermann, F., & Schramm-Klein, H. (2019). Is it human? The role of anthropomorphism as a driver for the successful acceptance of digital voice assistants. In Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS). Grand Wailea, Maui, United States: University of Hawaii at Manoa. Waytz, A., Gray, K., Epley, N., & Wegner, D. M. (2010). Causes and consequences of mind perception. Trends in cognitive sciences, 14(8), 383-388. Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of experimental social psychology, 52, 113-117. https://doi.org/10.1016/j.jesp.2014.01.005 Whang, C., & Im, H. (2021). "I like your suggestion!" the role of humanlikeness and parasocial relationship on the website versus voice shopper's perception of recommendations. Psychology &Marketing, 38(4), 581–595. https://doi.org/10.1002/mar.21437 Wiedmann, K.P., & Von Mettenheim, W. (2020). Attractiveness, trustworthiness and expertise–social influencers’ winning formula?. Journal of Product & Brand Management, 30(5), 707–725. DOI: 10.1108/JPBM-06-2019-2442 Wood, N. T., & Burkhalter, J. N. (2014). Tweet this, not that: A comparison between brand promotions in microblogging environments using celebrity and company-generated tweets. Journal of Marketing Communications, 20(1-2), 129-146. https://doi.org/10.1080/13527266.2013.797784 Xiang, A., Li, T., & Ma, M. (2023). How to Improve the Public Acceptance of Virtual Human: A Qualitative Comparative Analysis Based on 36 Cases. J. Commun. Rev., 76, 26-42. Xue, K., Li, Y., & Jin, H. (2022). What do you think of AI? Research on the influence of AI news anchor image on watching intention. Behavioral Sciences, 12(11), Article 11. https://doi.org/10.3390/bs12110465 Yang, J., Chuenterawong, P., Lee, H., & Chock, T. M. (2023). Anthropomorphism in CSR endorsement: A comparative study on humanlike vs. cartoonlike virtual influencers’ climate change messaging. Journal of Promotion Management, 29(5), 705-734. https://doi.org/10.1080/10496491.2022.2163041 Yu, Y., & Huang, K C. (2021). Friend or foe? Human journalists’ perspectives on artificial intelligence in Chinese media outlets. Chinese Journal of Communication, 14(4), 409-429.https://doi.org/10.1080/17544750.2021.1915832 Zanna, M.P., Olson, J.M., & Herman, C.P. (1987). Social Influence: The Ontario Symposium, Volume 5. Psychology Press. https://doi.org/10.4324/9781315802121 Zhao, W. (2023). The effects of CSR perceptions and agreements: applying the heuristic-systematic information processing model in CSR campaigns. Atlantic Journal of Communication, 1-17. https://doi.org/10.1080/15456870.2023.2211811 Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. N. (2018). Stackgan++: Realistic image synthesis with stacked generative adversarial networks. IEEE transactions on pattern analysis and machine intelligence, 41(8), 1947-1962. DOI: 10.1109/TPAMI.2018.2856256 Zhang, Y. (2023). The Integration of Traditional Broadcasters with Artificial Intelligence in Television News Programmes. SHS Web of Conferences, 158, 02009. https://doi.org/10.1051/shsconf/202315802009 Zheng, J. (2021). Thinking Technology as Human: Affordances, Technology Features, and Egocentric Biases in Technology Anthropomorphism. Journal of the Association for Information Systems, 22(5), 1429-1453. DOI: 10.17705/1jais.00698 DEEPBRAIN AI. (2024, July, 29th). Three Reasons Why News Stations are Using AI Anchor. https://www.deepbrain.io/blog/three-reasons-why-news-stations-are-using-ai-anchor Livedoor news. (2023). ライブドアニュース24 Livedoor news 24. [YouTube channel]. YouTube. https://www.youtube.com/@livedoornews24 NOWnews(2023年8月11日)。AI主播倪珍24小時播新聞AI Anchor Taiwan News Live Streaming。[YouTube 頻道]。YouTube。https://www.youtube.com/@NOWnews-sp2di 民視新聞網(2008年8月5日)。Formosa TV News network。[YouTube 頻道]。YouTube。https://www.youtube.com/@FTV_News 三立新聞網(2014年1月5日)。SETN。[YouTube 頻道]。YouTube。https://www.youtube.com/@setn 鏡新聞.(2017年12月5日)。mnews。[YouTube 頻道]。YouTube。https://www.youtube.com/@mnews-tw Vidonz (2021). https://www.vidnoz.com.
描述 碩士
國立政治大學
傳播學院傳播碩士學位學程
110464048
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110464048
資料類型 thesis
dc.contributor.advisor 林日璇zh_TW
dc.contributor.advisor Lin, Jih-Husanen_US
dc.contributor.author (作者) 張祺淯zh_TW
dc.contributor.author (作者) Chang, Chi-Yuen_US
dc.creator (作者) 張祺淯zh_TW
dc.creator (作者) Chang, Chi-Yuen_US
dc.date (日期) 2024en_US
dc.date.accessioned 3-三月-2025 14:50:24 (UTC+8)-
dc.date.available 3-三月-2025 14:50:24 (UTC+8)-
dc.date.issued (上傳時間) 3-三月-2025 14:50:24 (UTC+8)-
dc.identifier (其他 識別碼) G0110464048en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/156048-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 傳播學院傳播碩士學位學程zh_TW
dc.description (描述) 110464048zh_TW
dc.description.abstract (摘要) 隨著人工智慧的快速變革與生成式AI突破性的技術發展,運用AI虛擬新聞主播來播報新聞,逐漸成為新聞媒體產業的重要趨勢之一,其中擬人化 (Anthropomorphism)被廣泛運用在AI虛擬新聞主播的外觀設計與表達方式上, 因此本研究旨在探討AI虛擬新聞主播的擬人化程度會如何影響閱聽人的新聞態度及新聞觀看意圖。 本研究採線上實驗法,以AI虛擬新聞主播的擬人化程度分為兩組:仿真人形象組與卡通化形象組的受試者間設計(between-subjects design),將外表吸引力(Attractiveness)作為中介變項、可信度(Trustworthiness)作為調節變項,此 次實驗ㄧ共有80位受試者。研究結果發現,AI虛擬新聞主播的擬人化程度與外 表吸引力呈正相關;且外表吸引力對閱聽人的新聞態度與新聞觀看意圖有顯著正向影響,此外,外表吸引力在擬人化程度與閱聽人新聞態度、新聞觀看意圖的關係中有中介效果,然而可信度在以上關係中並未具有調節效果。zh_TW
dc.description.abstract (摘要) With the rapid advancements in artificial intelligence and the breakthrough development of generative AI technologies, the use of AI virtual news anchors has emerged as a significant trend in the news media industry. Anthropomorphism is widely applied in the design and presentation of AI virtual news anchors. Therefore, this research aimed to investigate how the degree of anthropomorphism in AI news anchors influences audience attitudes toward news and their intentions to watch news. This study conducted an online experiment, categorizing AI news anchors into two groups based on the degree of anthropomorphism: a human-like image group and a cartoon-like image group, using a between-subjects design. Attractiveness was examined as a mediator variable, while trustworthiness served as a moderator variable. A total of 80 participants were recruited for this experiment. The findings indicate that higher levels of anthropomorphism in AI news anchors were positively associated with greater attractiveness. Attractiveness positively influenced audience attitudes toward news and their news-watching intentions. Furthermore, attractiveness mediated the relationship between the degree of anthropomorphism and both audience attitudes toward news and their news-watching intentions. However, trustworthiness did not exhibit a moderating effect within these relationships.en_US
dc.description.tableofcontents 第一章 緒論 9 第一節 研究背景與動機 9 第二節 研究目的 12 第二章 文獻回顧 14 第一節 AI 虛擬新聞主播(AI NEWS ANCHOR) 14 第二節 人工智慧啟用科技(AI-ENABLED TECHNOLOGY, AIET) 16 第三節 擬人化(ANTHROPOMORPHISM) 17 第四節 外表吸引力(ATTRACTIVENESS) 21 第五節 可信度(TRUSTWORTHINESS) 23 第三章 研究方法 27 第一節 研究架構圖 27 第二節 研究假設 28 第三節 實驗設計 29 一、 實驗刺激物挑選 30 二、 前測設計與說明 30 三、 前測實驗結果 33 四、 正式實驗招募與流程 34 第四節 變項測量 35 一、自變項/操弄變項:擬人化程度 35 二、中介變項:外表吸引力 36 三、調節變項:可信度 36 四、應變項:閱聽人新聞態度、閱聽人新聞觀看意圖 37 (一)閱聽人新聞態度 37 (二)閱聽人新聞觀看意圖 38 五、人口統計變項 39 第四章 研究結果 40 第一節 樣本與描述性統計 40 第二節 量表信度檢測 42 一、外表吸引力量表信度檢測 42 二、可信度量表信度檢測 42 三、新聞態度量表信度檢測 43 四、新聞觀看意圖量表信度檢測 43 第三節 操弄檢定 43 第四節 假設檢驗 44 一、假設一:擬人化程度與閱聽人之關係 44 二、假設二:擬人化程度與外表吸引力之關係 45 三、假設三:外表吸引力與閱聽人之關係 45 四、假設四:外表吸引力之中介效果 46 五、假設五:可信度之調節效果 50 六、假設六:可信度之調節效果 52 七、假設七:可信度之調節效果 54 八、假設驗證小結 57 第五章 結論 58 第一節 研究發現與討論 59 一、AI 虛擬新聞主播外表吸引力與閱聽人之效果 59 二、AI 虛擬新聞主播可信度與閱聽人之效果 62 三、額外分析:AI 虛擬新聞主播可信度之中介效果 63 第二節 學術與實務貢獻 66 一、學術貢獻 66 二、實務貢獻 67 第三節 研究限制與未來研究建議 69 參考文獻 71 附錄 82 附錄一:前測問卷 (實驗刺激物挑選) 82 附錄二:正式實驗問卷 (仿真人形象組) 91 附錄三:正式實驗問卷 (仿卡通形象組) 96zh_TW
dc.format.extent 5875077 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110464048en_US
dc.subject (關鍵詞) 人工智慧(AIET)zh_TW
dc.subject (關鍵詞) AI虛擬新聞主播zh_TW
dc.subject (關鍵詞) 擬人化zh_TW
dc.subject (關鍵詞) 外表吸引力zh_TW
dc.subject (關鍵詞) 可信度zh_TW
dc.subject (關鍵詞) 新聞態度zh_TW
dc.subject (關鍵詞) 新聞觀看意圖zh_TW
dc.subject (關鍵詞) AI-enabled technology (AIET)en_US
dc.subject (關鍵詞) AI news anchoren_US
dc.subject (關鍵詞) anthropomorphismen_US
dc.subject (關鍵詞) attractivenessen_US
dc.subject (關鍵詞) trustworthinessen_US
dc.subject (關鍵詞) audience attitudes toward newsen_US
dc.subject (關鍵詞) news-watching intentionsen_US
dc.title (題名) AI虛擬新聞主播擬人化程度對閱聽人的新聞態度與新聞觀看意圖之影響zh_TW
dc.title (題名) The Impact of AI News Anchors’ Anthropomorphism on Audiences’ News Attitude and News-Watching Intentionsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Aaker, D. A. (2006). Brand portfolio strategy. Strategic direction, 22(10). Aggarwal, P., & McGill, A. L. (2007). Is that car smiling at me? Schema congruity as a basis for evaluating anthropomorphized products. Journal of consumer research, 34(4), 468-479. Ajzen, I. and Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior, Englewood Cliffs. Bargh, J. A. (1984). Automatic and conscious processing of social information. In R. S. Wyer, Jr. & T. K. Srull (Eds.), Handbook of social cognition (Vol. 3, pp 1-43). Hillsdale, NJ: Lawrence Erlbaum Associates. Bartneck, C., Kanda, T., Ishiguro, H., & Hagita, N. (2009). My robotic doppelgänger-A critical look at the uncanny valley. In RO-MAN 2009-The 18th IEEE international symposium on robot and human interactive communication (pp. 269-276). IEEE. https://doi.org/10.1109/ROMAN.2009.5326351 Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International journal of social robotics, 1, 71-81. https://doi.org/10.1007/s12369-008-0001-3 Bawack, R. E., Fosso Wamba, S., & Carillo, K. D. A. (2019). Artificial intelligence in practice: Implications for IS research. In Proceedings of the 25th Americas Conference on Information Systems (AMCIS). Cancún, Mexico: Association for Information Systems. Benbasat, I., & Wang, W. (2005). Trust in and adoption of online recommendation agents. Journal of the Association for Information Systems, 6(3), 4. Blöbaum, B. (2016). Key factors in the process of trust. On the analysis of trust under digital conditions. Trust and communication in a digitized world: Models and concepts of trust research, 3-25. Chaiken, S. (1980). Heuristic Versus Systematic Information Processing and the Use of Source Versus Message Cues in Persuasion. Journal of Personality and Social Psychology, 39(5), 752. https://doi.org/10.1037/0022-3514.39.5.752 Chen, L., Gillenson, M. & Sherrell, D. (2002). Enticing Online Consumers: An Extended Technology Perspective. Information & Management,39(8), 705-719. https://doi.org/10.1016/S0378-7206(01)00127-6 Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334. De-Lima-Santos, M. F., & Ceron, W. (2021). Artificial intelligence in news media: current perceptions and future outlook. Journalism and media, 3(1), 13-26. https://doi.org/10.3390/journalmedia3010002 De Visser, E. J., Monfort, S. S., McKendrick, R., Smith, M. A., McKnight, P. E., Krueger, F., & Parasuraman, R. (2016). Almost human: Anthropomorphism increases trust resilience in cognitive agents. Journal of Experimental Psychology: Applied, 22(3), 331-349. https://doi.org/10.1037/xap0000092 Dion, K., Berscheid, E., & Walster, E. (1972). What is beautiful is good. Journal of personality and social psychology, 24(3), 285. https://doi.org/10.1037/h0033731 Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of marketing research, 28(3), 307-319. https://doi.org/10.1177/002224379102800305 Dubosc, C., Gorisse, G., Christmann, O., Fleury, S., Poinsot, K., & Richir, S. (2021). Impact of avatar facial anthropomorphism on body ownership, attractiveness and social presence in collaborative tasks in immersive virtual environments. Computers & Graphics, 101, 82-92. https://doi.org/10.1016/j.cag.2021.08.011 Duffy, B. R. (2003). Anthropomorphism and the social robot. Robotics and autonomous systems, 42(3-4), 177-190. Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: A three-factor theory of anthropomorphism. Psychological Review, 114(4), 864-886. https://doi.org/10.1037/0033-295X.114.4.864 Nur Fitria, T. (2024). Artificial Intelligence (AI) News Anchor: How AI’s Performance in Journalistic Sector?. iTELL Journal, 1(1), 29-42. https://itell.or.id/journal/index.php/itelljournal/article/view/4 Fishbein, M. and Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Gerlich, M. (2023). The Power of Virtual Influencers: Impact on Consumer Behaviour and Attitudes in the Age of AI. Administrative Sciences, 13(8), 178. https://doi.org/10.3390/admsci13080178 Goldberg, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345-420. https://doi.org/10.1613/jair.4992 Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157-169. https://doi.org/10.1016/j.ijinfomgt.2019.03.008 Ha, Q.-A., Chen, J. V., Uy, H. U., & Capistrano, E. P. (2021). Exploring the privacy concerns in using intelligent virtual assistants under perspectives of information sensitivity and anthropomorphism. International Journal of Human–Computer Interaction, 37(6), 512–527. https://doi.org/10.1080/10447318.2020.1834728 Hansen, M., Roca-Sales, M., Keegan, J. M., & King, G. (2017). Artificial intelligence: Practice and implications for journalism. Columbia University. http://dx.doi.org/10.7916/D8X92PRD Hovland, C. I., & Weiss, W. (1951). The influence of source credibility on communication effectiveness. Public opinion quarterly, 15(4), 635-650. Huang, Y., & Yu, Z. (2023). Understanding the continuance intention for artificial intelligence news anchor: Based on the expectation confirmation theory. Systems, 11(9), 438. https://doi.org/10.3390/systems11090438 Kang, S. H., & Watt, J. H. (2013). The impact of avatar realism and anonymity on effective communication via mobile devices. Computers in Human Behavior, 29(3), 1169-1181. https://doi.org/10.1016/j.chb.2012.10.010 Kiesler, S., & Goetz, J. (2002). Mental models of robotic assistants. In CHI'02 Extended Abstracts on Human Factors in Computing Systems, 576-577. https://doi.org/10.1145/506443.506491 Kim, A., Cho, M., Ahn, J., & Sung, Y. (2019). Effects of gender and relationship type on the response to artificial intelligence. Cyberpsychology, Behavior, and Social Networking, 22(4), 249-253. https://doi.org/10.1089/cyber.2018.0581 La Ferle, C., & Choi, S. M. (2005). The importance of perceived endorser credibility in South Korean advertising. Journal of Current Issues & Research in Advertising, 27(1), 67-81. https://doi.org/10.1080/10641734.2005.10505182 Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human factors, 46(1), 50-80. https://doi.org/10.1518/hfes.46.1.50_30392 Li, M., & Suh, A. (2021). Machinelike or Humanlike? A Literature Review of Anthropomorphism in AI-Enabled Technology. In 54th Hawaii International Conference on System Sciences. pp.4053-4062. https://doi.org/10.24251/HICSS.2021.493 Li, M., Suh, A. (2022). Anthropomorphism in AI-enabled technology: A literature review. Electron Markets 32, 2245–2275. https://doi.org/10.1007/s12525-022-00591-7 McGuire, W. J. (1985). Chapter attitudes and attitude change. Handbook of social psychology, 233-346. McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa... examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28–37. https://doi.org/10.1016/j.chb.2019.05.009 Moussawi, S., & Koufaris, M. (2019). Perceived intelligence and perceived anthropomorphism of personal intelligent agents: Scale development and validation. In Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS). Grand Wailea, Maui, United States: University of Hawaii at Manoa. Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2021). How perceptions of intelligence and anthropomorphism affect adoption of personal intelligent agents. Electronic Markets, 31(2), 343-364. https://doi.org/10.1007/s12525-020-00411-w Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley [from the field]. IEEE Robotics & automation magazine, 19(2), 98-100. Natarajan, M., & Gombolay, M. (2020). Effects of anthropomorphism and accountability on trust in human robot interaction. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (pp. 33–42). https://doi.org/10.1145/3319502.3374839. Niu, D., Terken, J., & Eggen, B. (2018). Anthropomorphizing information to enhance trust in autonomous vehicles. Human Factors and Ergonomics in Manufacturing & Service Industries, 28(6), 352-359. https://doi.org/10.1002/hfm.20745 Niu, L., & Weng, W. (2020). A Study on the Mode of Training Program for Broadcasting and Hosting Art Major in the Age of Artificial Intelligence. 2020 International Conference on Computers, Information Processing and Advanced Education (CIPAE), 335–337. https://doi.org/10.1109/cipae51077.2020.00089 Nowak, K. (2003). The effect of the agency and anthropomorphism on users’ sense of telepresence, copresence, and social presence in virtual environments. Presence: Teleoperators and Virtual Environments 2003; 12 (5): 481-494. https://doi.org/10.1162/105474603322761289 Ohanian, R. (1990). Construction and Validation of a Scale to Measure Celebrity Endorsers' Perceived Expertise, Trustworthiness, and Attractiveness. Journal of Advertising, 19(3), 39-52. https://doi.org/10.1080/00913367.1990.10673191 Patra, B., & Kumar, M. (2020). Natural Language Processing in Chatbots: A Review. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 2890-2894. Pitardi, V., & Marriott, H. R. (2021). Alexa, she's not human but… Unveiling the drivers of consumers' trust in voice‐based artificial intelligence. Psychology & Marketing, 38(4), 626-642. https://doi.org/10.1002/mar.21457 Pradhan, A., Mehta, K., & Findlater, L. (2018). “Accessibility came by accident” use of voice-controlled intelligent personal assistants by people with disabilities. 2018 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3173574.3174033 / Qi, M. (2021). Teaching Reform of Broadcasting and Presenter under the Background of Artificial Intelligence. Journal of Physics: Conference Series, 1881(2), 022061. https://doi.org/10.1088/1742-6596/1881/2/022061 Qiu, L., & Benbasat, I. (2009). Evaluating anthropomorphic product recommendation agents: A social relationship perspective to designing information systems. Journal of Management Information Systems, 25(4), 145-182. https://doi.org/10.2753/MIS0742-1222250405 Ranjan, R.K., & Kushwaha, R. (2017). Impact of green marketing strategies on consumer purchase behavior. Review of Management, 7(3/4), 9–22. Rzepka, C., & Berger, B. (2018). User interaction with AI-enabled systems: A systematic review of IS research. In Proceedings of the 29th International Conference on Information Systems (ICIS). San Francisco, CA, United States: Association for Information Systems. Salles, A., Evers, K., & Farisco, M. (2020). Anthropomorphism in AI. AJOB Neuroscience, 11(2), 88–95. https://doi.org/10.1080/21507740.2020.1740350 Schaefer, K. E., Chen, J. Y. C., Szalma, J. L., & Hancock, P. A. (2016). A meta-analysis of factors influencing the development of trust in automation: Implications for understanding autonomy in future systems. Human Factors, 58(3), 377-400. https://doi.org/10.1177/0018720816634228 Seeger, A. M., Pfeiffer, J., & Heinzl, A. (2021). Texting with humanlike conversational agents: Designing for anthropomorphism. Journal of the Association for Information systems, 22(4), 8. Son, Y., & Oh, W. (2018). Alexa, buy me a movie!: How AI speakers reshape digital content consumption and preference. 39th International Conference on Information Systems. Tripp, A., & Sherrill, C. (1991). Attitude theories of relevance to adapted physical education. Adapted Physical Activity Quarterly, 8(1), 12-27. https://doi.org/10.1123/apaq.8.1.12 Vaezi, Reza; Mills, Annette; Chin, Wynne; and Zafar, Humayun. (2016). User Satisfaction Research in Information Systems: Historical Roots and Approaches. Communications of the Association for Information Systems: Vol. 38, Article 27. DOI: 10.17705/1CAIS.03827 Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., & Wang, F. Y. (2017). Generative adversarial networks: introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4(4), 588-598. DOI: 10.1109/JAS.2017.7510583 Wang, Y. (2021). Research on the Application of AI Anchors in TV Media under the Background of Artificial Intelligence. In 2021 2nd International Conference on Artificial Intelligence and Information Systems (pp. 1-4). https://doi.org/10.1145/3469213.3470671 Wagner, K., Nimmermann, F., & Schramm-Klein, H. (2019). Is it human? The role of anthropomorphism as a driver for the successful acceptance of digital voice assistants. In Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS). Grand Wailea, Maui, United States: University of Hawaii at Manoa. Waytz, A., Gray, K., Epley, N., & Wegner, D. M. (2010). Causes and consequences of mind perception. Trends in cognitive sciences, 14(8), 383-388. Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of experimental social psychology, 52, 113-117. https://doi.org/10.1016/j.jesp.2014.01.005 Whang, C., & Im, H. (2021). "I like your suggestion!" the role of humanlikeness and parasocial relationship on the website versus voice shopper's perception of recommendations. Psychology &Marketing, 38(4), 581–595. https://doi.org/10.1002/mar.21437 Wiedmann, K.P., & Von Mettenheim, W. (2020). Attractiveness, trustworthiness and expertise–social influencers’ winning formula?. Journal of Product & Brand Management, 30(5), 707–725. DOI: 10.1108/JPBM-06-2019-2442 Wood, N. T., & Burkhalter, J. N. (2014). Tweet this, not that: A comparison between brand promotions in microblogging environments using celebrity and company-generated tweets. Journal of Marketing Communications, 20(1-2), 129-146. https://doi.org/10.1080/13527266.2013.797784 Xiang, A., Li, T., & Ma, M. (2023). How to Improve the Public Acceptance of Virtual Human: A Qualitative Comparative Analysis Based on 36 Cases. J. Commun. Rev., 76, 26-42. Xue, K., Li, Y., & Jin, H. (2022). What do you think of AI? Research on the influence of AI news anchor image on watching intention. Behavioral Sciences, 12(11), Article 11. https://doi.org/10.3390/bs12110465 Yang, J., Chuenterawong, P., Lee, H., & Chock, T. M. (2023). Anthropomorphism in CSR endorsement: A comparative study on humanlike vs. cartoonlike virtual influencers’ climate change messaging. Journal of Promotion Management, 29(5), 705-734. https://doi.org/10.1080/10496491.2022.2163041 Yu, Y., & Huang, K C. (2021). Friend or foe? Human journalists’ perspectives on artificial intelligence in Chinese media outlets. Chinese Journal of Communication, 14(4), 409-429.https://doi.org/10.1080/17544750.2021.1915832 Zanna, M.P., Olson, J.M., & Herman, C.P. (1987). Social Influence: The Ontario Symposium, Volume 5. Psychology Press. https://doi.org/10.4324/9781315802121 Zhao, W. (2023). The effects of CSR perceptions and agreements: applying the heuristic-systematic information processing model in CSR campaigns. Atlantic Journal of Communication, 1-17. https://doi.org/10.1080/15456870.2023.2211811 Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. N. (2018). Stackgan++: Realistic image synthesis with stacked generative adversarial networks. IEEE transactions on pattern analysis and machine intelligence, 41(8), 1947-1962. DOI: 10.1109/TPAMI.2018.2856256 Zhang, Y. (2023). The Integration of Traditional Broadcasters with Artificial Intelligence in Television News Programmes. SHS Web of Conferences, 158, 02009. https://doi.org/10.1051/shsconf/202315802009 Zheng, J. (2021). Thinking Technology as Human: Affordances, Technology Features, and Egocentric Biases in Technology Anthropomorphism. Journal of the Association for Information Systems, 22(5), 1429-1453. DOI: 10.17705/1jais.00698 DEEPBRAIN AI. (2024, July, 29th). Three Reasons Why News Stations are Using AI Anchor. https://www.deepbrain.io/blog/three-reasons-why-news-stations-are-using-ai-anchor Livedoor news. (2023). ライブドアニュース24 Livedoor news 24. [YouTube channel]. YouTube. https://www.youtube.com/@livedoornews24 NOWnews(2023年8月11日)。AI主播倪珍24小時播新聞AI Anchor Taiwan News Live Streaming。[YouTube 頻道]。YouTube。https://www.youtube.com/@NOWnews-sp2di 民視新聞網(2008年8月5日)。Formosa TV News network。[YouTube 頻道]。YouTube。https://www.youtube.com/@FTV_News 三立新聞網(2014年1月5日)。SETN。[YouTube 頻道]。YouTube。https://www.youtube.com/@setn 鏡新聞.(2017年12月5日)。mnews。[YouTube 頻道]。YouTube。https://www.youtube.com/@mnews-tw Vidonz (2021). https://www.vidnoz.com.zh_TW