Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Analysis of Switching Dynamics with Competing Support Vector Machine
作者 張洺偉;林智仁;翁久幸
Chang, Ming-Wei;Lin, Chih-Jen;Weng, Ruby C.
日期 2004-05
上傳時間 19-Dec-2008 14:56:55 (UTC+8)
摘要 We present a framework for the unsupervised segmentation
     of switching dynamics using support vector machines.
     Following the architecture by Pawelzik et al., where annealed competing
     neural networks were used to segment a nonstationary time
     series, in this paper, we exploit the use of support vector machines,
     a well-known learning technique. First, a new formulation of support
     vector regression is proposed. Second, an expectation-maximization
     step is suggested to adaptively adjust the annealing parameter.
     Results indicate that the proposed approach is promising.
關聯 IEEE Transactions on Neural Networks 15(3),720-727
資料類型 article
DOI http://dx.doi.org/10.1109/IJCNN.2002.1007515
dc.creator (作者) 張洺偉;林智仁;翁久幸zh_TW
dc.creator (作者) Chang, Ming-Wei;Lin, Chih-Jen;Weng, Ruby C.-
dc.date (日期) 2004-05en_US
dc.date.accessioned 19-Dec-2008 14:56:55 (UTC+8)-
dc.date.available 19-Dec-2008 14:56:55 (UTC+8)-
dc.date.issued (上傳時間) 19-Dec-2008 14:56:55 (UTC+8)-
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/18226-
dc.description.abstract (摘要) We present a framework for the unsupervised segmentation
     of switching dynamics using support vector machines.
     Following the architecture by Pawelzik et al., where annealed competing
     neural networks were used to segment a nonstationary time
     series, in this paper, we exploit the use of support vector machines,
     a well-known learning technique. First, a new formulation of support
     vector regression is proposed. Second, an expectation-maximization
     step is suggested to adaptively adjust the annealing parameter.
     Results indicate that the proposed approach is promising.
-
dc.format application/pdfen_US
dc.format.extent 319500 bytes-
dc.format.mimetype application/pdf-
dc.language enen_US
dc.language en-USen_US
dc.language.iso en_US-
dc.relation (關聯) IEEE Transactions on Neural Networks 15(3),720-727en_US
dc.title (題名) Analysis of Switching Dynamics with Competing Support Vector Machineen_US
dc.type (資料類型) articleen
dc.identifier.doi (DOI) 10.1109/IJCNN.2002.1007515-
dc.doi.uri (DOI) http://dx.doi.org/10.1109/IJCNN.2002.1007515-