學術產出-會議論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 On Bargaining Strategies in the SFI Double Auction Tournaments: Is Genetic Programming the Answer?
作者 陳樹衡
貢獻者 Universitat Pompeu Fabra
日期 2000-06
上傳時間 9-一月-2009 11:23:01 (UTC+8)
摘要 While early computational studies of bargaining strategies, such as Rust, Miller and Palmer (1993, 1994) and Andrew and Prager (1996) all indicates the significance of agent-based modeling in the follow-up research, a real agent-based model of bargaining strategies in DA markets has never been taken. This paper attempts to take the fisrt step toward it.In this paper, genetic programming is employed to evolve bargaining strategies within the context of SFI double auction tournaments. We are interested in knowing that given a set of traders, each with a fixed trading strategies, can the automated trader driven by genetic programming eventually develop bargaining strategies which can outperform its competitors` strategies? To see how GP trader can survive in various environments, different sets of traders characterized by different compositions of bargaining strategies are chosen to compete with the single GP trader. To give a measure of the difficult level of the DA auction markets facing the GP trader, the program length is used to define the intelligence of chosen traders. In one experiment, the chosen traders are all naive; in another experiment, the traders are all sophisticated. Other experiments are placed in the middle of these two extremes.
關聯 No 329, Computing in Economics and Finance 2000 from Society for Computational Economics
資料類型 conference
dc.contributor Universitat Pompeu Fabraen_US
dc.creator (作者) 陳樹衡zh_TW
dc.date (日期) 2000-06en_US
dc.date.accessioned 9-一月-2009 11:23:01 (UTC+8)-
dc.date.available 9-一月-2009 11:23:01 (UTC+8)-
dc.date.issued (上傳時間) 9-一月-2009 11:23:01 (UTC+8)-
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/23026-
dc.description.abstract (摘要) While early computational studies of bargaining strategies, such as Rust, Miller and Palmer (1993, 1994) and Andrew and Prager (1996) all indicates the significance of agent-based modeling in the follow-up research, a real agent-based model of bargaining strategies in DA markets has never been taken. This paper attempts to take the fisrt step toward it.In this paper, genetic programming is employed to evolve bargaining strategies within the context of SFI double auction tournaments. We are interested in knowing that given a set of traders, each with a fixed trading strategies, can the automated trader driven by genetic programming eventually develop bargaining strategies which can outperform its competitors` strategies? To see how GP trader can survive in various environments, different sets of traders characterized by different compositions of bargaining strategies are chosen to compete with the single GP trader. To give a measure of the difficult level of the DA auction markets facing the GP trader, the program length is used to define the intelligence of chosen traders. In one experiment, the chosen traders are all naive; in another experiment, the traders are all sophisticated. Other experiments are placed in the middle of these two extremes.-
dc.format application/en_US
dc.language enen_US
dc.language en-USen_US
dc.language.iso en_US-
dc.relation (關聯) No 329, Computing in Economics and Finance 2000 from Society for Computational Economicsen_US
dc.title (題名) On Bargaining Strategies in the SFI Double Auction Tournaments: Is Genetic Programming the Answer?en_US
dc.type (資料類型) conferenceen