學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 一些非線性方程解的存在性
Existence of solutions for some nonlinear equations
作者 陳品均
貢獻者 李明融
陳品均
關鍵詞 震波
稀疏波
日期 2008
上傳時間 11-九月-2009 16:02:00 (UTC+8)
摘要 在這篇文章中,我們討論守恆方程∂_{t}u+∂_{x}f(u)=0解的存在性。我們藉由觀察物理現象和實驗結果討論這樣的問題。我們利用特徵曲線法並提出物理上的尺度分析法來找出某些非線性的方程式的解;特別針對通量函數為f(u)=u^2,u^3,-u^2,-u^3時,我們也發現守恆方程式的特別解。在某些實際上的意義下,我們將定義並找出震波集合和稀疏波集合,且找到了由有限個震波和稀疏波所組成的古典自相似解。
參考文獻 [1] Culbert B.L., Computational Gasdynamics, Cambridge University Press, 1998.
[2] LeFloch P.G., Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Birkhäuser Verlag, 2002.
[3] Teubner B.G., Numerical Schemes for Conservation Laws, John Wiley and Sons Ltd, 1997.
[4] Tzong-Hann Shieh, Meng-Rong Li, Numerical treatment of contact discontinuity with multi-gases, Journal of computational and applied mathematics, 2009 to appear.
[5] Tzong-Hann Shieh, Meng-Rong Li, Modeling and numerical treatment of contact discontinuity with difference gases, 2009, preprint.
描述 碩士
國立政治大學
應用數學研究所
95751001
97
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0095751001
資料類型 thesis
dc.contributor.advisor 李明融zh_TW
dc.contributor.author (作者) 陳品均zh_TW
dc.creator (作者) 陳品均zh_TW
dc.date (日期) 2008en_US
dc.date.accessioned 11-九月-2009 16:02:00 (UTC+8)-
dc.date.available 11-九月-2009 16:02:00 (UTC+8)-
dc.date.issued (上傳時間) 11-九月-2009 16:02:00 (UTC+8)-
dc.identifier (其他 識別碼) G0095751001en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/29676-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 95751001zh_TW
dc.description (描述) 97zh_TW
dc.description.abstract (摘要) 在這篇文章中,我們討論守恆方程∂_{t}u+∂_{x}f(u)=0解的存在性。我們藉由觀察物理現象和實驗結果討論這樣的問題。我們利用特徵曲線法並提出物理上的尺度分析法來找出某些非線性的方程式的解;特別針對通量函數為f(u)=u^2,u^3,-u^2,-u^3時,我們也發現守恆方程式的特別解。在某些實際上的意義下,我們將定義並找出震波集合和稀疏波集合,且找到了由有限個震波和稀疏波所組成的古典自相似解。zh_TW
dc.description.tableofcontents Contents
     Abstract i
     中文摘要 ii
     1 Introduction 1
     1.1 Entropies........................................ 1
     1.2 Weak solutions and shocks........................ 3
     2 Solutions for some nonlinear differential equations 10
     2.1 Characteristic methods........................... 10
     2.2 Physical dimension method........................ 13
     3 Riemann problems 16
     4 Scalar conservation laws 18
     4.1 Shock waves for concave flux functions…......... 18
     4.2 Rarefaction waves for concave flux functions..... 23
     4.3 Classical solutions.............................. 25
     5 Nonclassical shocks 31
     References 34
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0095751001en_US
dc.subject (關鍵詞) 震波zh_TW
dc.subject (關鍵詞) 稀疏波zh_TW
dc.title (題名) 一些非線性方程解的存在性zh_TW
dc.title (題名) Existence of solutions for some nonlinear equationsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Culbert B.L., Computational Gasdynamics, Cambridge University Press, 1998.zh_TW
dc.relation.reference (參考文獻) [2] LeFloch P.G., Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Birkhäuser Verlag, 2002.zh_TW
dc.relation.reference (參考文獻) [3] Teubner B.G., Numerical Schemes for Conservation Laws, John Wiley and Sons Ltd, 1997.zh_TW
dc.relation.reference (參考文獻) [4] Tzong-Hann Shieh, Meng-Rong Li, Numerical treatment of contact discontinuity with multi-gases, Journal of computational and applied mathematics, 2009 to appear.zh_TW
dc.relation.reference (參考文獻) [5] Tzong-Hann Shieh, Meng-Rong Li, Modeling and numerical treatment of contact discontinuity with difference gases, 2009, preprint.zh_TW