學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 以令牌桶機制為基礎的IEEE 802.16允許控管以及上行封包排程
作者 江啟宏
Chiang,Chi-Hung
貢獻者 蔡子傑
Tsai,Tzu-Chieh
江啟宏
Chiang,Chi-Hung
關鍵詞 令牌桶
排程
token bucket
scheduling
QoS
802.16
日期 2005
上傳時間 11-九月-2009 16:04:43 (UTC+8)
摘要 IEEE 802.16標準是針對無線城域網路(Wireless Metropolitan Area Network)而設計的,它支援服務品質(QoS),而且具有相當高的傳輸速率。每一種應用服務都有不同的型態,根據這些不同的型態,802.16 定義了四個不同的服務品質類別。然而,最關鍵的部份-封包排程卻沒有被定義在802.16標準裡面。在這篇論文中,我們提出了一套完整的允入控管(call admission control)和上行封包排程的架構。首先,我們先以令牌桶(token bucket)機制為基礎,設計了一套802.16專用的允入控管和上行封包排程的模組。接著我們介紹如何將令牌桶機制套用至一般的連線。我們找出了一個預測連線的延遲(delay)和漏失率(loss rate)的模型,接著可以利用這個模型,並透過簡單的搜尋演算法來找出適合的令牌速率和令牌桶的大小。模擬的結果表示,我們的允入控管和上行封包排程能夠確實對具有即時性質的連線的提供保證,且我們將令牌桶機制套用到一般連線的模組也能準確的運作。最後,我們也提出了一個簡單的整合實例並評估其效能。
The IEEE 802.16 standard was designed for Wireless Metropolitan Area Network (WMAN). It supports QoS and has very high transmission rate. According to different application types, there are four QoS classes defined in the IEEE 802.16 standard. The key part of 802.16 for QoS– packet scheduling, was undefined. In this thesis, a complete call admission control (CAC) and uplink packet scheduling is presented. We first proposed a token-bucket based uplink packet scheduling combined with CAC. Then a model of characterizing traffic flows by token bucket parameters, namely token rate and bucket size, is presented. We proposed a queuing model to predict the delay and loss rate for a token bucket controlled traffic flow. In order to fulfill token bucket based CAC, we need to find appropriate token rate and bucket size for any flows. A simple search algorithm coupled with our queuing model can be used to achieve this. Multiplexing of two traffic flows is also introduced. The simulation results show that our CAC and uplink packet scheduling can promise the delay requirement of real-time flows and prevent each class from starvation. The precision of our token rate estimation model is also validated. Finally, a simple integration of our CAC, uplink scheduling, and multiplexing is evaluated.
參考文獻 [1] IEEE, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems”, IEEE standard, December 2001
[2] IEEE, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems”, IEEE standard, October 2004
[3] Carl Eklund, Roger B. Marks, Kenneth L. Stanwood and Stanley Wang, “IEEE standard 802.16: A technical overview of the wirelessMAN air interface for broadband wireless access”, IEEE Communications Magazine, vol. 40, no. 6, June 2002, pp. 98 – 107.
[4] Kitti Wongthavarawat, and Aura Ganz, “Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems”, International Journal of Communication Systems, vol. 16, issue 1, February 2003, pp. 81-96
[5] Dong-Hoon Cho, Jung-Hoon Song, Min-Su Kim, and Ki-Jun Han, “Performance Analysis of the IEEE 802.16 Wireless Metropolitan Area Network”, IEEE Computer Society, DFMA’05, February 2005, pp. 130-137.
[6] Puqi Perry Tang and Tsung-Yuan Charles Tai, “Network traffic characterization using token bucket model”, IEEE INFOCOM 1999 - The Conference on Computer Communications, no. 1, March 1999, pp. 51 – 62.
[7] Tarkan Taralp, Michael Devetsikiotis, and Ioannis Lambadaris, “Traffic Characterization for QoS Provisioning in High-Speed Networks”, IEEE Computer Society, Thirty-First Annual Hawaii International Conference on System Sciences-Volume 7, January 1998, pp. 485.
[8] Kleinrock L., “Queueing Systems. Volume I: Theory”, John Wiley, New York, 1975.
[9] Xiaojun XIAO, Winston K.G. SEAH, Chi Chung KO, and Yong Huat CHEW, “Upstream Resource Reservation and Scheduling Strategies for Hybrid Fiber/Coaxial Networks”, APCC/OECC`99, vol. 2, October 1999, pp. 1163-1169
[10] Mohammed Hawa, and David W. Petr, “Quality of Service Scheduling in Cable and Broadband Wireless Access Systems”, Quality of Service, 2002. Tenth IEEE International Workshop, May 2002, pp. 247-255
[11] Reuven Cohen and Liran Katzir, “A generic quantitative approach to the scheduling of synchronous packets in a shared medium wireless access network”, IEEE INFOCOM 2004 - The Conference on Computer Communications, vol. 23, no. 1, March 2004, pp. 1674 – 1684
[12] Guosong Chu, Deng Wang, and Shunliang Mei, “A QoS Architecture for the MAC Protocol of IEEE 802.16 BWA System “, IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 1, June 2002, pp. 435–439
描述 碩士
國立政治大學
資訊科學學系
92753003
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0927530031
資料類型 thesis
dc.contributor.advisor 蔡子傑zh_TW
dc.contributor.advisor Tsai,Tzu-Chiehen_US
dc.contributor.author (作者) 江啟宏zh_TW
dc.contributor.author (作者) Chiang,Chi-Hungen_US
dc.creator (作者) 江啟宏zh_TW
dc.creator (作者) Chiang,Chi-Hungen_US
dc.date (日期) 2005en_US
dc.date.accessioned 11-九月-2009 16:04:43 (UTC+8)-
dc.date.available 11-九月-2009 16:04:43 (UTC+8)-
dc.date.issued (上傳時間) 11-九月-2009 16:04:43 (UTC+8)-
dc.identifier (其他 識別碼) G0927530031en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/29697-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 92753003zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) IEEE 802.16標準是針對無線城域網路(Wireless Metropolitan Area Network)而設計的,它支援服務品質(QoS),而且具有相當高的傳輸速率。每一種應用服務都有不同的型態,根據這些不同的型態,802.16 定義了四個不同的服務品質類別。然而,最關鍵的部份-封包排程卻沒有被定義在802.16標準裡面。在這篇論文中,我們提出了一套完整的允入控管(call admission control)和上行封包排程的架構。首先,我們先以令牌桶(token bucket)機制為基礎,設計了一套802.16專用的允入控管和上行封包排程的模組。接著我們介紹如何將令牌桶機制套用至一般的連線。我們找出了一個預測連線的延遲(delay)和漏失率(loss rate)的模型,接著可以利用這個模型,並透過簡單的搜尋演算法來找出適合的令牌速率和令牌桶的大小。模擬的結果表示,我們的允入控管和上行封包排程能夠確實對具有即時性質的連線的提供保證,且我們將令牌桶機制套用到一般連線的模組也能準確的運作。最後,我們也提出了一個簡單的整合實例並評估其效能。zh_TW
dc.description.abstract (摘要) The IEEE 802.16 standard was designed for Wireless Metropolitan Area Network (WMAN). It supports QoS and has very high transmission rate. According to different application types, there are four QoS classes defined in the IEEE 802.16 standard. The key part of 802.16 for QoS– packet scheduling, was undefined. In this thesis, a complete call admission control (CAC) and uplink packet scheduling is presented. We first proposed a token-bucket based uplink packet scheduling combined with CAC. Then a model of characterizing traffic flows by token bucket parameters, namely token rate and bucket size, is presented. We proposed a queuing model to predict the delay and loss rate for a token bucket controlled traffic flow. In order to fulfill token bucket based CAC, we need to find appropriate token rate and bucket size for any flows. A simple search algorithm coupled with our queuing model can be used to achieve this. Multiplexing of two traffic flows is also introduced. The simulation results show that our CAC and uplink packet scheduling can promise the delay requirement of real-time flows and prevent each class from starvation. The precision of our token rate estimation model is also validated. Finally, a simple integration of our CAC, uplink scheduling, and multiplexing is evaluated.en_US
dc.description.tableofcontents CHAPTER 1 Introduction 1
      1.1 Background 2
      1.1.1 Token Bucket Mechanism 2
      1.1.2 The IEEE 802.16 Standard 3
      1.2 Motivation 7
      1.3 Organization 8
     CHAPTER 2 Related Work 9
     CHAPTER 3 CAC and Uplink Packet Scheduling 17
      3.1 Call Admission Control (CAC) 17
      3.1.1 The Bandwidth Requirements of rtPS flows 18
      3.1.2 The CAC Algorithm 21
      3.2 Uplink Packet Scheduling Algorithm 25
     CHAPTER 4 Token Rate Estimation Model 28
      4.1 Case of Infinite Queue 28
      4.1.1 Case Analysis 29
      4.1.2 Markov Chain State 30
      4.1.3 Results 33
      4.2 Case of Finite Queue 37
      4.2.1 Case Analysis 37
      4.2.2 Markov Chain State 38
      4.2.3 Results 40
      4.3 A Simple Search Algorithm 45
     CHAPTER 5 Simulation Results 47
      5.1 CAC and Uplink Packet Scheduling 47
      5.2 Token Rate Estimation Model 50
      5.2.1 Case of Infinite Queue 50
      5.2.2 Case of Finite Queue 52
      5.3 Multiplexing 53
     CHAPTER 6 An Example of Integration 55
     CHAPTER 7 Conclusions and Future Work 58
     REFERENCES 60
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0927530031en_US
dc.subject (關鍵詞) 令牌桶zh_TW
dc.subject (關鍵詞) 排程zh_TW
dc.subject (關鍵詞) token bucketen_US
dc.subject (關鍵詞) schedulingen_US
dc.subject (關鍵詞) QoSen_US
dc.subject (關鍵詞) 802.16en_US
dc.title (題名) 以令牌桶機制為基礎的IEEE 802.16允許控管以及上行封包排程zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] IEEE, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems”, IEEE standard, December 2001zh_TW
dc.relation.reference (參考文獻) [2] IEEE, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems”, IEEE standard, October 2004zh_TW
dc.relation.reference (參考文獻) [3] Carl Eklund, Roger B. Marks, Kenneth L. Stanwood and Stanley Wang, “IEEE standard 802.16: A technical overview of the wirelessMAN air interface for broadband wireless access”, IEEE Communications Magazine, vol. 40, no. 6, June 2002, pp. 98 – 107.zh_TW
dc.relation.reference (參考文獻) [4] Kitti Wongthavarawat, and Aura Ganz, “Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems”, International Journal of Communication Systems, vol. 16, issue 1, February 2003, pp. 81-96zh_TW
dc.relation.reference (參考文獻) [5] Dong-Hoon Cho, Jung-Hoon Song, Min-Su Kim, and Ki-Jun Han, “Performance Analysis of the IEEE 802.16 Wireless Metropolitan Area Network”, IEEE Computer Society, DFMA’05, February 2005, pp. 130-137.zh_TW
dc.relation.reference (參考文獻) [6] Puqi Perry Tang and Tsung-Yuan Charles Tai, “Network traffic characterization using token bucket model”, IEEE INFOCOM 1999 - The Conference on Computer Communications, no. 1, March 1999, pp. 51 – 62.zh_TW
dc.relation.reference (參考文獻) [7] Tarkan Taralp, Michael Devetsikiotis, and Ioannis Lambadaris, “Traffic Characterization for QoS Provisioning in High-Speed Networks”, IEEE Computer Society, Thirty-First Annual Hawaii International Conference on System Sciences-Volume 7, January 1998, pp. 485.zh_TW
dc.relation.reference (參考文獻) [8] Kleinrock L., “Queueing Systems. Volume I: Theory”, John Wiley, New York, 1975.zh_TW
dc.relation.reference (參考文獻) [9] Xiaojun XIAO, Winston K.G. SEAH, Chi Chung KO, and Yong Huat CHEW, “Upstream Resource Reservation and Scheduling Strategies for Hybrid Fiber/Coaxial Networks”, APCC/OECC`99, vol. 2, October 1999, pp. 1163-1169zh_TW
dc.relation.reference (參考文獻) [10] Mohammed Hawa, and David W. Petr, “Quality of Service Scheduling in Cable and Broadband Wireless Access Systems”, Quality of Service, 2002. Tenth IEEE International Workshop, May 2002, pp. 247-255zh_TW
dc.relation.reference (參考文獻) [11] Reuven Cohen and Liran Katzir, “A generic quantitative approach to the scheduling of synchronous packets in a shared medium wireless access network”, IEEE INFOCOM 2004 - The Conference on Computer Communications, vol. 23, no. 1, March 2004, pp. 1674 – 1684zh_TW
dc.relation.reference (參考文獻) [12] Guosong Chu, Deng Wang, and Shunliang Mei, “A QoS Architecture for the MAC Protocol of IEEE 802.16 BWA System “, IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 1, June 2002, pp. 435–439zh_TW