學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 相依競爭風險邊際分配估計之探討
作者 張簡嘉詠
貢獻者 陳麗霞
張簡嘉詠
關鍵詞 競爭風險
無法識別
關聯結構
相關性參數
機率積分轉換
關聯結構-圖形估計量
competing risks
non-identifiable
copula
dependence parameter
probability integral transformations
copula-graphic estimator
日期 2007
上傳時間 2009-09-14
摘要 競爭風險之下對邊際分配的估計,是許多領域中常遇到的問題。由於主要事件及次要事件互相競爭,只要一種事件先發生即終止對另一事件的觀察,在兩事件同時發生的機率為0之下,連一筆完整的資料我們都無法蒐集到。除非兩事件互為獨立或加上其它條件,否則會有邊際分配無法識別的問題。但是獨立的條件在有些情況下並不合理,為解決相依競爭風險之邊際分配無法識別的問題,可先假定兩事件發生時間之間的關係。
     由於關聯結構定義出兩變數間的結合關係,我們可利用關聯結構解釋兩事件發生時間之間的關係。假定兩變數之相關性參數為已知,且採用機率積分轉換的觀念,本論文討論了Zheng 與 Klein提出的關聯結構-圖形估計量,是否會依設限程度、相關性強度和關聯結構形式的不同,以致估計能力有別。
The problem of estimating marginal distributions in a competing risks study is often met in scientific fields. Because main event and secondary event compete with each other, and a first occurring event prevents us from observing another event promptly, the intact lifetimes or survival times are unable to be collected in the circumstances that the probability of both lifetimes coinciding is 0. Unless lifetimes being independent or adding other conditions, there is a problem that the marginal distributions are non-identifiable. But the condition of independence is not always reasonable, we may assume the relation between lifetimes has some special form
     Because the copula defines the association between two variables, it can be employed to explain relation between lifetimes. Assuming that the dependence parameter in the copula framework is known, and adopting the concept of the probability integral transformations, this thesis has demonstrated whether the estimating abilities of the copula-graphic estimator, that Zheng and Klein put forward, are different in rates of censoring, intensities of dependence, and forms of the copula.
參考文獻 Andersen, P. K., Ekstrøm, C. T., Klein, J. P., Shu, Y. & Zhang, M. J. (2005), A class of goodness of fit tests for a copula based on bivariate right-censored data, Biometrical Journal, 47, 815-824.
Bacigál, T. & Komorníková, M. (2006), Fitting Archimedean copulas to bivariate geodetic data, Proceedings in Computational Statistics.
Bedford, T. (2005), Competing risk modeling in reliability, Modern Statistical & Mathematical Methods in Reliability, 1-16.
Brown, B. W., Hollander, M. & Korwar, R. M. (1974), Nonparametric tests of independence for censored data, with applications to heart transplant studies, Reliability and Biometry, 327-354.
Chen, M. C. & Bandeen-Roche, K. (2005), A diagnostic for association in bivariate survival models, Lifetime Data Analysis, 11, 245–264.
Davis, C. E. & Quade, D. (1968), On comparing the correlations within two pairs of variables, Biometrics, 24, 987-995.
Genest, C. & Rivest, L. P. (1993), Statistical inference procedures for bivariate Archimedean copulas, Journal of the American Statistical Association, 88, 1034-1043.
Genest, C. (1987), Frank s family of bivariate distributions, Biometrika, 74, 549-555.
Genest, C. & MacKay, J. (1986), The joy of copulas: Bivariate distributions with uniform marginals, The American Statistician, 40, 280-283.
Hougaard, P. (1984), Life table methods for heterogeneous populations: Distributions describing the heterogeneity, Biometrika, 71, 75-83.
Joe, H. (1993), Parametric families of multivariate distributions with given margins, Journal of Multivariate Analysis, 46, 262-282.
Kaplan, E. L. & Meier, P. (1958), Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481.
Klein, J. P. & Moeschberger, M. L. (1988), Bounds on net survival probabilities for dependent competing risks, Biometrics, 44, 529-538.
Moeschberger, M. L. & Klein, J. P. (1995), Statistical methods for dependent competing risks, Lifetime Data Analysis, 1, 195–204.
Nelsen, R. B. (1999), An Introduction to Copulas, Springer, New York.
Oakes, D. (1989), Bivariate survival models induced by frailties, Journal of the American Statistical Association, 84, 487-493.
Peterson, A. V. (1977), Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions, Journal of the American Statistical Association, 72, 854-858.
Schweizer, B. & Sklar, A. (1983), Probabilistic Metric Spaces.
Schwettzer, B. & Wolff, E. (1981), On nonparametric measures of dependence for random variables, The Annals of Statistics, 9, 879-885.
Sklar, A. (1959), Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de Statistique de l’Université de Paris, 8, 229-231.
Slud, E. V. & Rubinstein, L. V. (1983), Dependent competing risks and summary survival curves, Biometrika, 70, 643-649.
Tsiatis, A. A. (1975), A nonidentifiability aspect of the problem of competing risks, Proceedings of the National Academy of Sciences, 72, 20-22.
Vaupel, J. W., Manton, K. G., & Stallard, E. (1979), The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16, 439-454.
Wang, W. (2004), Estimating the association parameter for copula models under dependent censoring, Journal of the Royal Statistical Society, Series B. 65, 257-273.
Wang, W. & Wells, M. T. (2000), Estimation of Kendall s tau under censoring, Statistica Sinica, 10, 1199–1215.
Zheng, M. & Klein, J. P. (1995), Estimates of marginal survival for dependent competing risks based on an assumed copula, Biometrika, 82, 127-138.
描述 碩士
國立政治大學
統計研究所
94354011
96
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0094354011
資料類型 thesis
dc.contributor.advisor 陳麗霞zh_TW
dc.contributor.author (作者) 張簡嘉詠zh_TW
dc.creator (作者) 張簡嘉詠zh_TW
dc.date (日期) 2007en_US
dc.date.accessioned 2009-09-14-
dc.date.available 2009-09-14-
dc.date.issued (上傳時間) 2009-09-14-
dc.identifier (其他 識別碼) G0094354011en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/30915-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 94354011zh_TW
dc.description (描述) 96zh_TW
dc.description.abstract (摘要) 競爭風險之下對邊際分配的估計,是許多領域中常遇到的問題。由於主要事件及次要事件互相競爭,只要一種事件先發生即終止對另一事件的觀察,在兩事件同時發生的機率為0之下,連一筆完整的資料我們都無法蒐集到。除非兩事件互為獨立或加上其它條件,否則會有邊際分配無法識別的問題。但是獨立的條件在有些情況下並不合理,為解決相依競爭風險之邊際分配無法識別的問題,可先假定兩事件發生時間之間的關係。
     由於關聯結構定義出兩變數間的結合關係,我們可利用關聯結構解釋兩事件發生時間之間的關係。假定兩變數之相關性參數為已知,且採用機率積分轉換的觀念,本論文討論了Zheng 與 Klein提出的關聯結構-圖形估計量,是否會依設限程度、相關性強度和關聯結構形式的不同,以致估計能力有別。
zh_TW
dc.description.abstract (摘要) The problem of estimating marginal distributions in a competing risks study is often met in scientific fields. Because main event and secondary event compete with each other, and a first occurring event prevents us from observing another event promptly, the intact lifetimes or survival times are unable to be collected in the circumstances that the probability of both lifetimes coinciding is 0. Unless lifetimes being independent or adding other conditions, there is a problem that the marginal distributions are non-identifiable. But the condition of independence is not always reasonable, we may assume the relation between lifetimes has some special form
     Because the copula defines the association between two variables, it can be employed to explain relation between lifetimes. Assuming that the dependence parameter in the copula framework is known, and adopting the concept of the probability integral transformations, this thesis has demonstrated whether the estimating abilities of the copula-graphic estimator, that Zheng and Klein put forward, are different in rates of censoring, intensities of dependence, and forms of the copula.
en_US
dc.description.tableofcontents 第一章 緒論.............................................. 1
     1.1 簡介................................................ 1
     1.2 論文架構............................................ 4
     第二章 關聯結構的介紹..................................... 5
     2.1 阿基米德關聯結構的介紹................................ 8
     2.2 事故傾向模式的介紹....................................13
     2.3 相關性參數的介紹......................................16
     2.4 估計相關性參數方法的介紹...............................18
     第三章 相依競爭風險的介紹..................................21
     3.1 無法識別的問題.......................................23
     3.2 邊際分配的估計方法....................................24
     第四章 模擬與分析.........................................30
     第五章 結論與建議.........................................40
     參考文獻........................................................41
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0094354011en_US
dc.subject (關鍵詞) 競爭風險zh_TW
dc.subject (關鍵詞) 無法識別zh_TW
dc.subject (關鍵詞) 關聯結構zh_TW
dc.subject (關鍵詞) 相關性參數zh_TW
dc.subject (關鍵詞) 機率積分轉換zh_TW
dc.subject (關鍵詞) 關聯結構-圖形估計量zh_TW
dc.subject (關鍵詞) competing risksen_US
dc.subject (關鍵詞) non-identifiableen_US
dc.subject (關鍵詞) copulaen_US
dc.subject (關鍵詞) dependence parameteren_US
dc.subject (關鍵詞) probability integral transformationsen_US
dc.subject (關鍵詞) copula-graphic estimatoren_US
dc.title (題名) 相依競爭風險邊際分配估計之探討zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Andersen, P. K., Ekstrøm, C. T., Klein, J. P., Shu, Y. & Zhang, M. J. (2005), A class of goodness of fit tests for a copula based on bivariate right-censored data, Biometrical Journal, 47, 815-824.zh_TW
dc.relation.reference (參考文獻) Bacigál, T. & Komorníková, M. (2006), Fitting Archimedean copulas to bivariate geodetic data, Proceedings in Computational Statistics.zh_TW
dc.relation.reference (參考文獻) Bedford, T. (2005), Competing risk modeling in reliability, Modern Statistical & Mathematical Methods in Reliability, 1-16.zh_TW
dc.relation.reference (參考文獻) Brown, B. W., Hollander, M. & Korwar, R. M. (1974), Nonparametric tests of independence for censored data, with applications to heart transplant studies, Reliability and Biometry, 327-354.zh_TW
dc.relation.reference (參考文獻) Chen, M. C. & Bandeen-Roche, K. (2005), A diagnostic for association in bivariate survival models, Lifetime Data Analysis, 11, 245–264.zh_TW
dc.relation.reference (參考文獻) Davis, C. E. & Quade, D. (1968), On comparing the correlations within two pairs of variables, Biometrics, 24, 987-995.zh_TW
dc.relation.reference (參考文獻) Genest, C. & Rivest, L. P. (1993), Statistical inference procedures for bivariate Archimedean copulas, Journal of the American Statistical Association, 88, 1034-1043.zh_TW
dc.relation.reference (參考文獻) Genest, C. (1987), Frank s family of bivariate distributions, Biometrika, 74, 549-555.zh_TW
dc.relation.reference (參考文獻) Genest, C. & MacKay, J. (1986), The joy of copulas: Bivariate distributions with uniform marginals, The American Statistician, 40, 280-283.zh_TW
dc.relation.reference (參考文獻) Hougaard, P. (1984), Life table methods for heterogeneous populations: Distributions describing the heterogeneity, Biometrika, 71, 75-83.zh_TW
dc.relation.reference (參考文獻) Joe, H. (1993), Parametric families of multivariate distributions with given margins, Journal of Multivariate Analysis, 46, 262-282.zh_TW
dc.relation.reference (參考文獻) Kaplan, E. L. & Meier, P. (1958), Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481.zh_TW
dc.relation.reference (參考文獻) Klein, J. P. & Moeschberger, M. L. (1988), Bounds on net survival probabilities for dependent competing risks, Biometrics, 44, 529-538.zh_TW
dc.relation.reference (參考文獻) Moeschberger, M. L. & Klein, J. P. (1995), Statistical methods for dependent competing risks, Lifetime Data Analysis, 1, 195–204.zh_TW
dc.relation.reference (參考文獻) Nelsen, R. B. (1999), An Introduction to Copulas, Springer, New York.zh_TW
dc.relation.reference (參考文獻) Oakes, D. (1989), Bivariate survival models induced by frailties, Journal of the American Statistical Association, 84, 487-493.zh_TW
dc.relation.reference (參考文獻) Peterson, A. V. (1977), Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions, Journal of the American Statistical Association, 72, 854-858.zh_TW
dc.relation.reference (參考文獻) Schweizer, B. & Sklar, A. (1983), Probabilistic Metric Spaces.zh_TW
dc.relation.reference (參考文獻) Schwettzer, B. & Wolff, E. (1981), On nonparametric measures of dependence for random variables, The Annals of Statistics, 9, 879-885.zh_TW
dc.relation.reference (參考文獻) Sklar, A. (1959), Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de Statistique de l’Université de Paris, 8, 229-231.zh_TW
dc.relation.reference (參考文獻) Slud, E. V. & Rubinstein, L. V. (1983), Dependent competing risks and summary survival curves, Biometrika, 70, 643-649.zh_TW
dc.relation.reference (參考文獻) Tsiatis, A. A. (1975), A nonidentifiability aspect of the problem of competing risks, Proceedings of the National Academy of Sciences, 72, 20-22.zh_TW
dc.relation.reference (參考文獻) Vaupel, J. W., Manton, K. G., & Stallard, E. (1979), The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16, 439-454.zh_TW
dc.relation.reference (參考文獻) Wang, W. (2004), Estimating the association parameter for copula models under dependent censoring, Journal of the Royal Statistical Society, Series B. 65, 257-273.zh_TW
dc.relation.reference (參考文獻) Wang, W. & Wells, M. T. (2000), Estimation of Kendall s tau under censoring, Statistica Sinica, 10, 1199–1215.zh_TW
dc.relation.reference (參考文獻) Zheng, M. & Klein, J. P. (1995), Estimates of marginal survival for dependent competing risks based on an assumed copula, Biometrika, 82, 127-138.zh_TW