dc.contributor.advisor | 陳麗霞 | zh_TW |
dc.contributor.author (作者) | 張凱嵐 | zh_TW |
dc.contributor.author (作者) | Chang, Kai lan | en_US |
dc.creator (作者) | 張凱嵐 | zh_TW |
dc.creator (作者) | Chang, Kai lan | en_US |
dc.date (日期) | 2008 | en_US |
dc.date.accessioned | 2009-09-14 | - |
dc.date.available | 2009-09-14 | - |
dc.date.issued (上傳時間) | 2009-09-14 | - |
dc.identifier (其他 識別碼) | G0095354013 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/30922 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計研究所 | zh_TW |
dc.description (描述) | 95354013 | zh_TW |
dc.description (描述) | 97 | zh_TW |
dc.description.abstract (摘要) | 近來地理資訊系統(GIS)之資料庫受到不同領域的統計學家廣泛的研究,以期建立及分析可描述空間聚集效應及變異之模型,而描述空間相關存活資料之統計模式為公共衛生及流行病學上新興的研究議題。本文擬建立多維度半參數的貝氏階層模型,並結合空間及非空間隨機效應以描述存活資料中的空間變異。此模式將利用多變量條件自回歸(MCAR)模型以檢驗在不同地理區域中是否存有空間聚集效應。而基準風險函數之生成為分析貝氏半參數階層模型的重要步驟,本研究將利用混合Polya樹之方式生成基準風險函數。美國國家癌症研究院之「流行病監測及最終結果」(Surveillance Epidemiology and End Results, SEER)資料庫為目前美國最完整的癌症病人長期追蹤資料,包含癌症病人存活狀況、多重癌症史、居住地區及其他分析所需之個人資料。本文將自此資料庫擷取美國愛荷華州之癌症病人資料為例作實證分析,並以貝氏統計分析中常用之模型比較標準如條件預測指標(CPO)、平均對數擬邊際概似函數值(ALMPL)、離差訊息準則(DIC)分別測試其可靠度。 | zh_TW |
dc.description.abstract (摘要) | The databases of Geographic Information System (GIS) have gained attention among different fields of statisticians to develop and analyze models which account for spatial clustering and variation. There is an emerging interest in modeling spatially correlated survival data in public health and epidemiologic studies. In this article, we develop Bayesian multivariate semiparametric hierarchical models to incorporate both spatially correlated and uncorrelated frailties to answer the question of spatial variation in the survival patterns, and we use multivariate conditionally autoregressive (MCAR) model to detect that whether there exists the spatial cluster across different areas. The baseline hazard function will be modeled semiparametrically using mixtures of finite Polya trees. The SEER (Surveillance Epidemiology and End Results) database from the National Cancer Institute (NCI) provides comprehensive cancer data about patient’s survival time, regional information, and others demographic information. We implement our Bayesian hierarchical spatial models on Iowa cancer data extracted from SEER database. We illustrate how to compute the conditional predictive ordinate (CPO), the average log-marginal pseudo-likelihood (ALMPL), and deviance information criterion (DIC), which are Bayesian criterions for model checking and comparison among competing models. | en_US |
dc.description.tableofcontents | 1. Introduction 1 2 Semiparametric Spatial Models for Multiple Cancers 4 2.1 Semiparametric proportional odds frailty models 4 2.2 CAR and MCAR 5 2.2.1. Univariate CAR models 5 2.2.2. Multivariate CAR models 8 2.3. Multivariate semiparametric proportional odds models for multiple cancers 10 2.4. Mixture of Polya trees priors for the baseline survival function 11 3. Numerical implementation 16 3.1 SEER database and multiple response 16 3.2 Models Implementation 18 3.3 The Mixture of Polya trees prior implementation 19 3.4 MCMC steps 20 4. Illustration 21 5. Summary and Future Work 34 References 36 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0095354013 | en_US |
dc.subject (關鍵詞) | 空間聚集 | zh_TW |
dc.subject (關鍵詞) | 比例勝算模型 | zh_TW |
dc.subject (關鍵詞) | 貝氏階層模型 | zh_TW |
dc.subject (關鍵詞) | 混合Polya樹 | zh_TW |
dc.subject (關鍵詞) | 馬可夫鏈蒙地卡羅模擬 | zh_TW |
dc.subject (關鍵詞) | 多變量條件自回歸模型 | zh_TW |
dc.subject (關鍵詞) | 條件預測指標 | zh_TW |
dc.subject (關鍵詞) | 平均對數擬邊際概似函數值 | zh_TW |
dc.subject (關鍵詞) | 離差訊息準則 | zh_TW |
dc.subject (關鍵詞) | spatial clusters | en_US |
dc.subject (關鍵詞) | proportional odds | en_US |
dc.subject (關鍵詞) | Bayesian hierarchical model | en_US |
dc.subject (關鍵詞) | mixture of Polya trees | en_US |
dc.subject (關鍵詞) | Markov Chain Monte Carlo (MCMC) | en_US |
dc.subject (關鍵詞) | multivariate conditionally autoregressive (MCAR) | en_US |
dc.subject (關鍵詞) | average log-marginal pseudo-likelihood (ALMPL) | en_US |
dc.subject (關鍵詞) | conditional predictive ordinate (CPO) | en_US |
dc.subject (關鍵詞) | deviance information criterion (DIC) | en_US |
dc.title (題名) | 空間相關存活資料之貝氏半參數比例勝算模式 | zh_TW |
dc.title (題名) | Bayesian semiparametric proportional odds models for spatially correlated survival data | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | Aslanidou, H., Dey, D.K. and Sinha, D. (1998). Bayesian analysis of multivariate survival data using Monte Carlo methods. Canadian Journal of Statistics, 26, 33-48. | zh_TW |
dc.relation.reference (參考文獻) | Banerjee, S, Carlin, B.P. and Gelfand, A.E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Boca Raton: Chapman and Hall/CRC. | zh_TW |
dc.relation.reference (參考文獻) | Banerjee, S., Wall, M. and Carlin, B.P. (2003). Frailty modelling for spatially correlated survival data with application to infant mortality in Minnesota. Biostatistics, 4, 123–142. | zh_TW |
dc.relation.reference (參考文獻) | Banerjee, S. and Dey, D.K. (2005). Semiparametric proportional odds model for spatially correlated survival data. Lifetime Data Analysis, 11, 175–191. | zh_TW |
dc.relation.reference (參考文獻) | Besag, J. (1974). Spatial Interaction and the Statistical Analysis of Lattice Systems (with Discussion). Journal of the Royal Statistical Society, Ser. B, 36, 192–236. | zh_TW |
dc.relation.reference (參考文獻) | Bennett, S. (1983). Analysis of survival data by the proportional odds model. Statistics in Medicine, 2, 273–277. | zh_TW |
dc.relation.reference (參考文獻) | Brook, D. (1964). On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems. Biometrika, 51(3-4), 481-483 | zh_TW |
dc.relation.reference (參考文獻) | Carlin, B.P. and Banerjee, S. (2003). Hierarchical multivariate car models for spatio-temporally correlated survival data. Bayesian Statistics, 7, 45–64. | zh_TW |
dc.relation.reference (參考文獻) | Celeux, G., Forbes, F., Robert, C.P. and Titterington, D.M. (2006). Deviance information criteria for missing data models (with discussion). Bayesian Analysis, 1, 651–706. | zh_TW |
dc.relation.reference (參考文獻) | Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65,141–151. | zh_TW |
dc.relation.reference (參考文獻) | Cox, D.R. (1972). Regression models with life tables. Journal of the Royal Statistical Society, 34, 187–220. | zh_TW |
dc.relation.reference (參考文獻) | Diva, U.A., Banerjee, S. and Dey, D.K. (2007). Modeling spatially correlated survival data for individuals with multiple cancers. Statistical Modeling, 7(2), 1–23. | zh_TW |
dc.relation.reference (參考文獻) | Diva, U.A., Dey, D.K. and Banerjee, S. (2008). Parametric models for spatially correlated survival data for individuals with multiple cancers. Statistics in Medicine, 27, 2127–2144. | zh_TW |
dc.relation.reference (參考文獻) | Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209–230. | zh_TW |
dc.relation.reference (參考文獻) | Gelfand, A.E. and Vounatsou, P. (2002). Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics, 4, 11–25. | zh_TW |
dc.relation.reference (參考文獻) | Gilks, W.R. and Wild, P. (1992). Adaptive Rejection Sampling for Gibbs Sampling. Applied Statistics, 41(2), 337-348 | zh_TW |
dc.relation.reference (參考文獻) | Geisser, S. and Eddy, W.F. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153-160. | zh_TW |
dc.relation.reference (參考文獻) | Hammersley, J.M. and Clifford, P. (1971). Markov fields on finite graphs and lattices. Unpublished. | zh_TW |
dc.relation.reference (參考文獻) | Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–45. | zh_TW |
dc.relation.reference (參考文獻) | Kraft, C.H. (1964). A Class of Distribution Function Processes Which Have Derivatives. Journal of Applied Probability, 1, 385-388 | zh_TW |
dc.relation.reference (參考文獻) | Han, C. and Carlin, B.P. (2001). Markov chain Monte Carlo methods for computing Bayes factors: a comparative review. Journal of the American Statistical Association, 96, 1122-1132. | zh_TW |
dc.relation.reference (參考文獻) | Hanson, T. and Johnson, W.O. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97, 1020–1033. | zh_TW |
dc.relation.reference (參考文獻) | Hanson, T. (2006). Inference for mixtures of finite Polya tree models. Journal of the American Statistical Association, 101, 1548-1565. | zh_TW |
dc.relation.reference (參考文獻) | Hanson, T. and Yang, M. (2007). Bayesian semiparametric proportional odds models. Biometrics, 63, 88-95. | zh_TW |
dc.relation.reference (參考文獻) | Heinävaara, S. (2003). Modelling survival of patients with multiple cancers. Ph.D. Thesis, University of Helsinki, Statistical Research Reports, No. 18. The Finnish Statistical Society. | zh_TW |
dc.relation.reference (參考文獻) | Held, L. and Best, N.G. (2001). A shared component model for detecting joint and selective clustering of two diseases. Journal of the Royal Statistical Society, Series A, 164, 73–85. | zh_TW |
dc.relation.reference (參考文獻) | Held, L., Natario, I., Fenton, S., Rue, H. and Becker, N. (2005). Towards joint disease mapping. Statistical Methods in Medical Research, 14, 61–82. | zh_TW |
dc.relation.reference (參考文獻) | Ibrahim, J.G., Chen, M.H. and Sinha, D. (2001). Bayesian Survival Analysis, New York: Springer-Verlag. | zh_TW |
dc.relation.reference (參考文獻) | Jin, X. and Carlin, B.P. (2005). Multivariate parametric spatio-temporal models for county level breast cancer survival data. Lifetime Data Analysis, 11, 5-27. | zh_TW |
dc.relation.reference (參考文獻) | Jin, X., Carlin, B.P. and Banerjee, S. (2005). Generalized hierarchical multivariate car models for areal data. Biometrics, 61, 950–961. | zh_TW |
dc.relation.reference (參考文獻) | Lam, K. F., Lee, Y. W., and Leung, T. L. (2002). Modeling multivariate survival data by a semiparametric random effects proportional odds model. Biometrics, 58, 316–323. | zh_TW |
dc.relation.reference (參考文獻) | Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modeling. Annals of Statistics, 20, 1222–1235. | zh_TW |
dc.relation.reference (參考文獻) | Lichstein, J.W., Simons, T.R., Shriner, S.A. and Franzreb. K.E. (2002). Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 72(3), 445–463. | zh_TW |
dc.relation.reference (參考文獻) | Mallick, B.K. and Walker, S.G. (2003). A Bayesian semiparametric transformation model incorporating frailties. Journal of Statistical Planning and Inference, 112, 159-174. | zh_TW |
dc.relation.reference (參考文獻) | Mardia, K. V. (1988). Multi-Dimensional Multivariate Gaussian Markov Random Fields with Application to Image Processing. Journal of Multivariate Analysis, 24, 265–284. | zh_TW |
dc.relation.reference (參考文獻) | Murphy, S. A., Rossini, A. J., and van der Vaart, A. W. (1997). Maximum likelihood estimation in the proportional odds model. Journal of the American Statistical Association, 92, 968–976. | zh_TW |
dc.relation.reference (參考文獻) | National Cancer Institute (NCI). Cancer Facts: Cancer Clusters, Fact Sheet. http://cancertrials.nci.nih.gov/images/Documents/ | zh_TW |
dc.relation.reference (參考文獻) | Ries, L.A.G., Eisner, M.P., Kosary, C.L., Hankey, B.F., Miller, B.A., Clegg, L., Mariotto, A., Feuer, E.J. and Edwards, B.K. (eds). SEER Cancer Statistics Review, 1975–2002, National Cancer Institute, Bethesda, MD. Available from: http://seer.cancer.gov/csr/1975 2002/, based on November 2004 SEER data submission, posted to the SEER Web site 2005 | zh_TW |
dc.relation.reference (參考文獻) | Sahu, S. K., Dey, D. K., Aslanidou, H., and Sinha, D. (1997). A Weibull regression model with gamma frailties for multivariate survival data. Lifetime Data Analysis, 3, 123–137. | zh_TW |
dc.relation.reference (參考文獻) | Sinha, D. and Dey, D. K. (1997). Semiparametric Bayesian analysis of survival data. Journal of the American Statistical Association, 92, 1195–1212. | zh_TW |
dc.relation.reference (參考文獻) | Spiegelhalter, D.J., Best, N., Carlin, B.P., and van der Linde, (2002). A. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 583-639. | zh_TW |
dc.relation.reference (參考文獻) | Sun, D., Tsutakawa, R.K., Kim, H., and Zhuoqiong, H. (2000). Spatio-temporal interaction with disease mapping. Statistics in Medicine, 19, 2015-2035. | zh_TW |
dc.relation.reference (參考文獻) | Sundaram, S. (2006). Semiparametric inference in proportional odds model with time-dependent covariates. Journal of Statistical Planning and Inference, 136, 320–334. | zh_TW |
dc.relation.reference (參考文獻) | Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence—SEER 11 Regs + AK Public-use, November 2005 Sub (1973–2005 varying). National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2004, based on the November 2007 submission | zh_TW |
dc.relation.reference (參考文獻) | Walker, S.G. and Mallick, B.K. (1997). Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing. Journal of the Royal Statistical Society, Series B, 59, 845-860. | zh_TW |
dc.relation.reference (參考文獻) | Walker, S.G. and Mallick, B.K. (1999). Semiparametric accelerated life time model. Biometrics, 55, 477-483. | zh_TW |
dc.relation.reference (參考文獻) | Yang, S. and Prentice, R.L. (1999). Semiparametric inference in the proportional odds regression model. Journal of the American Statistical Association, 94, 125–136. | zh_TW |
dc.relation.reference (參考文獻) | Zhao, L., Hanson, T., and Carlin, B.P. (2009). Mixtures of Polya trees for flexible spatial frailty survival modeling. Biometrika, 96(2), 263–276 | zh_TW |
dc.relation.reference (參考文獻) | Zucker, D.M. and Yang, S. (2005). Inference for a family of survival models encompassing the proportional hazards and proportional odds model. Statistics in Medicine, 25, 995–1014. | zh_TW |