Publications-Theses

題名 探討預期性對比效果之神經機制
Investigation of the neural mechanisms of anticipatory contrast effect
作者 林緯倫
Lin, Wea Lun
貢獻者 廖瑞銘
林緯倫
Lin, Wea Lun
關鍵詞 預期性對比效果
延宕折扣
依核核心區
眶前額皮質區
杏仁體基側核區
anticipatory contrast effect
delay discounting
nucleus accumbens core
orbitofrontal cortex
basolateral amygdala
日期 2007
上傳時間 17-Sep-2009 13:13:53 (UTC+8)
摘要 很多行為的建構基礎是來自酬賞動機,而個體的行為表現通常是動態的歷程,其中對酬賞物的“價值”比較,是決定行為是否輸出或輸出多少的重要關鍵。在鼠類的動物行為模式中,可以利用甜液舔飲來進行這種對比(contrast)歷程的實驗。在受試可先後獲得兩次舔飲機會的實驗情境中,若兩管濃度皆為4%的蔗糖液先後間隔特定時距出現,受試會隨訓練天數增加而增加對兩管糖液的舔飲表現。若第一管4%蔗糖液之後會呈現濃度較高的32%蔗糖液,受試舔飲第一管同為濃度4%蔗糖液的表現會隨訓練天數增加而先增後減。這兩組受試對第一管糖液的舔飲量差異,即稱為預期性對比效果。一般認為此現象是受試等待與預期較高酬賞價值的糖液,而抑制當前較低酬賞價值糖液的舔飲。過去對此現象的研究主要關注在行為層面的探討,然而其相關神經機制的研究並不多,本研究的目的即在於探討與習得或形成預期性對比行為有關的神經機制。一般認為預期性對比效果的習得包含多階段的歷程,可能與多種心理行為面向有關,因此很有可能是經由多元性的神經機制參與。預期性對比效果的形成與否與兩糖液呈現的間距長短有很大的關係。本研究實驗一以0.5分鐘、2分鐘以及6分鐘三個不同的糖液間距引發的預期對比效果,從當中選取可有效形成預期性對比效果的0.5分鐘為實驗二糖液間距的依據。實驗二分別以興奮性神經毒素破壞依核核心區、眶前額皮質區以及杏仁體基側核區等三個神經區域。結果顯示杏仁核基側核區破壞不影響預期性對比效果的習得,而依核核心區以及眶前額皮質的破壞使受試無法習得預期性對比效果。綜合以上結果,預期性對比效果的習得是依靠有效的糖液呈現間距去進行酬賞比較,腦中依核核心區及眶前額皮質區與該種對比有關。
Many types of behavior are constructed on the basis of reward motivation, which can be run in dynamic processes. Among those processes potentially involved, the reward comparison is a key determinant for the magnitude of behavioral output. The licking of sweet solution in the rat can be used as an animal model to investigate the contrast effect derived from reward comparison. In which, the subjects presented two sweet solutions in a sequential order each day may suppress intake of the first solution if the second solution is preferred. This phenomenon is termed anticipatory contrast effect (ACE). It is hypothesized that ACE could be built via an inhibition process associated with subject’s waiting for a preferred solution as presented by a less preferred solution. Most of the previous studies were mainly focused on the behavioral aspects of ACE. The present study intended to investigate the neural mechanisms of ACE. In considering that the formation of ACE requires multiple-stage processes, this study presumed that more than one brain area could be involved in mediating those psycho-behavioral processes. Experiment 1 was intended to establish behavioral model by manipulating the effectiveness of different inter-solution interval (ISI; 0.5, 2.0, and 6.0 min). The results showed that the ISI of 0.5 min is the critical parameters for the successful formation of ACE, which was then applied in Experiment 2. Experiment 2 investigated the effects of excitotoxin lesion conducted by ibotenic acid in the nucleus accumbens core (NACc), orbitofrontal cortex (OFC) or basolateral amygdala (BLA) on the acquisition of ACE. The result showed the rats with NACc or OFC lesion significantly failed to acquire ACE, but no such impairment appeared to BLA lesion. Together, these data suggest that the formation of ACE is depended upon the ISI leading to an effective reward comparison, and the NACc or OFC is involved in such a contrast processing.
參考文獻 Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293-1295.
Bjork, J. M., Knutson, B., Fong, G. W., Caggiano, D. M., Bennett, S. M., & Hommer, D. W. (2004). Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. Journal of Neuroscience,24, 1793-1802.
Bohn, I., Giertler, C., & Haubert, W. (2003). Orbital prefrontal cortex and guidance of instrumental behaviour in rats under reversal conditions. Behavioural Brain Research 143, 49-56.
Cardinal, R. N. (2006). Neural systems implicated in delayed and probabilistic reinforcement. Neural Networks, 19, 1277-1301.
Cardinal, R. N., & Howes, N. J. (2005). Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neuroscience, 6, 37.
Cardinal, R. N., Pennicott, D. R., Sugathapala, C. L., Robbins, T. W., & Everitt, B. J. (2001). Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science, 292, 2499-2501.
Cromwell, H. C., & Schultz, W. (2003). Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. Journal of Neurophysiology, 89, 2823-2838.
Flaherty, C. F. (1982). Incentive contrast: A review of behavioral changes following shift in reward. Animal Learning & Behavior, 10, 409-440.
Flaherty, C. F. (1996). Incentive relativity. Cambridge, England: Cambridge University Press.
Flaherty, C. F., & Checke, S. (1982). Anticipation of incentive gain. Animal Learning & Behavior, 10, 177-182.
Flaherty, C. F., Coppotelli, C., Grigson, P. S., Mitchell, C., & Flaherty, J. E. (1995). Investigation of the devaluation interpretation of anticipatory negative contrast. Journal of Experimental Psychology: Animal Behavior Processes, 21, 229-247.
Flaherty, C. F., Grigson, P. S., Checke, S., & Hnat, K. C. (1991). Deprivation state and temporal horizons in anticipatory contrast. Journal of Experimental Psychology: Animal Behavior Processes, 17, 503-518.
Flaherty, C. F., Grigson, P. S., Coppotelli, C., & Mitchell, C. (1996). Anticipatory contrast as a function of access time and spatial location of saccharin and sucrose solutions. Animal Learning & Behavior, 24, 68-81.
Flaherty, C. F., Grigson, P. S., & Lind, S. (1990). Chlordiazepoxide and the moderation of the initial response to reward reduction. The Quarterly Journal of Experimental Psychology, 42B, 87-105.
Flaherty, C. F., & Rowan, G. A. (1985). Anticipatory contrast: within-subjects analysis. Animal Learning & Behavior, 13, 2-5.
Flaherty, C. F., & Rowan, G. A. (1986). Successive, simultaneous, and anticipatory contrast in the consumption of saccharin solutions. Journal of Experimental Psychology: Animal Behavior Processes, 12, 381-393.
Flaherty, C. F., & Rowan, G. A. (1988). Effect of intersolution interval, chlordiazepoxide and amphetamine on anticipatory contrast. Animal Learning & Behavior, 16, 47-52.
Flaherty, C. F., Rowan, G. A., Emerich, D., & Walsh, T. (1989). Effects of intra-hippocampal administration of colchicines on incentive contrast and on radial maze performance. Behavioral Neuroscience, 103, 319-328.
Flaherty, C. F., Turovsky, J., & Krauss, K. L. (1994). Relative hedonic value modulates anticipatory contrast. Physiology & Behavior, 55, 1047-1054.
Gallagher, M., McMahan, R.W., and Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. Journal of Neuroscience, 19, 6610-6614.
Gilbert, P. E., & Kesner, R. P. (2002). The amygdala but not the hippocampus is involved in pattern separation based on reward value. Neurobiology of Learning and Memory, 77, 338-353.
Grigson, P. S. (1997). Conditioned Taste Aversions and Drugs of Abuse: A Reinterpretation. Behavioral Neuroscience, 111, 129-136.
Grigson, P. S. (2000). Drug of abuse and reward comparison: a brief review. Appetite, 35, 89-91.
Grigson, P. S. (2002). Like drugs for chocolate: Separate rewards modulated by common mechanisms?. Physiology & Behavior, 76, 389-395.
Hikosaka, K., & Watanabe, M. (2000). Delay activity of orbito and lateral prefrontal neurons of monkey varying with different rewards. Cerebral Cortex, 10, 263-271.
Ho, M. Y., Mobini, S., Chiang, T. J., Bradshaw, C. M., & Szabadi, E. (1999). Theory and method in the quantitative analysis of “impulsive choice” behaviour: implications for psychopharmacology. Psychopharmacology, 146, 362-372.
Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14, 148-155.
Kesner, R. P., & Gilbert, P. E. (2007). The role of agranular insular cortex in anticipation of reward contrast. Neurobiology of Learning and Memory, 88, 82-86.
Kheramin, S., Body, S., Ho, M. Y., Velazquez-Martinez, D. N., Bradshaw, C. M., Szabadi, E., Deakin, J. F. W., & Anderson, I. M. (2003). Role of the orbital prefrontal cortex in choice between delayed and uncertain reinforcers: a quantitative analysis. Behavioural Processes, 64, 239-250.
Leszczuk, M. H., & Flaherty, C. F. (2000). Lesions of nucleus accumbens reduce instrumental but not consummatory negative contrast in rats. Behavioural Brain Research, 116, 61-79.
Liao, R. M., & Chuang, F. J. (2003). Differential effects of diazepam infused into the amygdala and hippocampus on negative contrast. Pharmacology, Biochemistry & Behavior, 74, 953-960.
Lucas, G. A., Gawley, D. J., & Timberlake, W. (1988). Anticipatory contrast as a measure of time horizons in the rat: Some methodological determinants. Animal Learning & Behavior, 16, 377-382.
Lucas, G. A., Timberlake, W., Gawley, D. J., & Drew, J. (1990). Anticipation of future food: Suppression and facilitation of saccharin intake depending on the delay and type of future food. Journal of Experimental Psychology: Animal Behavior Processes, 16, 169-177.
McDonald, A. J. (1991). Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience, 44, 1-14.
Mitchell, C., & Flaherty, C. F. (1998). Temporal dynamics of corticosterone elevation in successive negative contrast. Physiology & Behavior, 64, 287-292.
Miyazaki, K., Mogi, E., Araki, N., & Matsumoto, G. (1998). Reward-quality dependent anticipation in rat nucleus accumbens. Neuroreport, 9, 3943-3948.
Mobini, S., Body, S., Ho, M. Y., Bradshaw, C. M., Szabadi, E., Deakin, J. F., & Anderson, I. M. (2002). Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology, 160, 290-298.
Moss, N. D., Clarke, J. C., & Kehoe, E. J. (2002). Paradoxical effects of hedonic disparities in negative anticipatory contrast. Physiology & Behavior, 75, 435-442.
Ongur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and himans. Cerebral Cortex, 10, 206-219.
Papini, M. R. (2003). Comparative psychology of surprising nonreward. Brain, Behavior and Evolution, 62, 83-95.
Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates 6th edition. Australia: Academic Press.
Pothuizen, H. H., Jongen-Relo, A. L., Feldon, J., & Yee, B. K. (2005). Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. European Journal of Neuroscience, 22, 2605-2616.
Ragozzino, M. E., & Kesner, R. P. (1999). The role of the agranular insular cortex in working memory for food reward value and allocentric space in rats. Behavioural Brain Research, 98, 103-112.
Reilly, S., Bornovalova, M., & Trifunovic, R. (2004). Excitotoxic lesions of the gustatory thalamus spare simultaneous contrast effects but eliminate anticipatory negative contrast: Evidence against a memory deficit. Behavioral Neuroscience, 118, 365-376.
Reilly, S., & Pritchard, T. C. (1996). Gustatory thalamus lesions in the Rat: II. Aversive and appetitive taste conditioning. Behavioral Neuroscience, 110, 746-759.
Roesch, M. R., Taylor, A. R., & Schoenbaum, G. (2006). Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron, 51, 509-520.
Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284-294.
Schoenbaum, G., Chiba, A. A., & Gallagher, M. (1998). Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience, 1, 155-159.
Schoenbaum, G., Setlow, B., & Ramus, S. J. (2003). A systems approach to orbitofrontal cortex function: recordings in rat orbitofrontal cortex reveal interactions with different learning systems. Behavioural Brain Research, 146, 19-29.
Schoenbaum, G., Setlow, B., Saddoris, M. P., & Gallagher, M. (2003). Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdale. Neuron, 39, 855-867.
Schroy, P. L., Wheeler, R. A., Davidson, C., Scalera, G., Twining, R. C., & Grigson, P. S. (2005). Role of gustatory thalamus in anticipation and comparison of rewards over time in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288, 966-990.
Schultz, W., Apicella, P., Scarnati, E., & Ljungberg, T. (1992). Neuronal activity in monkey ventral striatum related to the expectation of reward. The Journal of Neuroscience, 12, 4595-4610.
Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate Orbitofrontal cortex. Nature, 398, 704-708.
Winstanley, C. A., Theobald, D. E., Cardinal, R. N., & Robbins, T. W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. Journal of Neuroscience, 24, 4718-4722.
描述 碩士
國立政治大學
心理學研究所
93752001
96
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093752001
資料類型 thesis
dc.contributor.advisor 廖瑞銘zh_TW
dc.contributor.author (Authors) 林緯倫zh_TW
dc.contributor.author (Authors) Lin, Wea Lunen_US
dc.creator (作者) 林緯倫zh_TW
dc.creator (作者) Lin, Wea Lunen_US
dc.date (日期) 2007en_US
dc.date.accessioned 17-Sep-2009 13:13:53 (UTC+8)-
dc.date.available 17-Sep-2009 13:13:53 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 13:13:53 (UTC+8)-
dc.identifier (Other Identifiers) G0093752001en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32484-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 心理學研究所zh_TW
dc.description (描述) 93752001zh_TW
dc.description (描述) 96zh_TW
dc.description.abstract (摘要) 很多行為的建構基礎是來自酬賞動機,而個體的行為表現通常是動態的歷程,其中對酬賞物的“價值”比較,是決定行為是否輸出或輸出多少的重要關鍵。在鼠類的動物行為模式中,可以利用甜液舔飲來進行這種對比(contrast)歷程的實驗。在受試可先後獲得兩次舔飲機會的實驗情境中,若兩管濃度皆為4%的蔗糖液先後間隔特定時距出現,受試會隨訓練天數增加而增加對兩管糖液的舔飲表現。若第一管4%蔗糖液之後會呈現濃度較高的32%蔗糖液,受試舔飲第一管同為濃度4%蔗糖液的表現會隨訓練天數增加而先增後減。這兩組受試對第一管糖液的舔飲量差異,即稱為預期性對比效果。一般認為此現象是受試等待與預期較高酬賞價值的糖液,而抑制當前較低酬賞價值糖液的舔飲。過去對此現象的研究主要關注在行為層面的探討,然而其相關神經機制的研究並不多,本研究的目的即在於探討與習得或形成預期性對比行為有關的神經機制。一般認為預期性對比效果的習得包含多階段的歷程,可能與多種心理行為面向有關,因此很有可能是經由多元性的神經機制參與。預期性對比效果的形成與否與兩糖液呈現的間距長短有很大的關係。本研究實驗一以0.5分鐘、2分鐘以及6分鐘三個不同的糖液間距引發的預期對比效果,從當中選取可有效形成預期性對比效果的0.5分鐘為實驗二糖液間距的依據。實驗二分別以興奮性神經毒素破壞依核核心區、眶前額皮質區以及杏仁體基側核區等三個神經區域。結果顯示杏仁核基側核區破壞不影響預期性對比效果的習得,而依核核心區以及眶前額皮質的破壞使受試無法習得預期性對比效果。綜合以上結果,預期性對比效果的習得是依靠有效的糖液呈現間距去進行酬賞比較,腦中依核核心區及眶前額皮質區與該種對比有關。zh_TW
dc.description.abstract (摘要) Many types of behavior are constructed on the basis of reward motivation, which can be run in dynamic processes. Among those processes potentially involved, the reward comparison is a key determinant for the magnitude of behavioral output. The licking of sweet solution in the rat can be used as an animal model to investigate the contrast effect derived from reward comparison. In which, the subjects presented two sweet solutions in a sequential order each day may suppress intake of the first solution if the second solution is preferred. This phenomenon is termed anticipatory contrast effect (ACE). It is hypothesized that ACE could be built via an inhibition process associated with subject’s waiting for a preferred solution as presented by a less preferred solution. Most of the previous studies were mainly focused on the behavioral aspects of ACE. The present study intended to investigate the neural mechanisms of ACE. In considering that the formation of ACE requires multiple-stage processes, this study presumed that more than one brain area could be involved in mediating those psycho-behavioral processes. Experiment 1 was intended to establish behavioral model by manipulating the effectiveness of different inter-solution interval (ISI; 0.5, 2.0, and 6.0 min). The results showed that the ISI of 0.5 min is the critical parameters for the successful formation of ACE, which was then applied in Experiment 2. Experiment 2 investigated the effects of excitotoxin lesion conducted by ibotenic acid in the nucleus accumbens core (NACc), orbitofrontal cortex (OFC) or basolateral amygdala (BLA) on the acquisition of ACE. The result showed the rats with NACc or OFC lesion significantly failed to acquire ACE, but no such impairment appeared to BLA lesion. Together, these data suggest that the formation of ACE is depended upon the ISI leading to an effective reward comparison, and the NACc or OFC is involved in such a contrast processing.en_US
dc.description.tableofcontents 目錄……………………………………………………………………… i
圖目錄…………………………………………………………………ii
中文摘要……………………………………………………………………… 1
英文摘要……………………………………………………………………… 2
第一章 研究背景…………………………………………………………… 4
一、 前言 …………………………………………………………… 4
二、 對比效果 ……………………………………………………… 4
三、 預期性對比效果 ……………………………………………… 6
(一) 酬賞物的相對價值 ……………………………………… 6
(二) 甜液體刺激間距 ………………………………………… 7
(三) 糖液呈現的時間長度………………………………………8
四、 預期性對比效果的行為內涵 ………………………………… 9
五、 預期性對比效果的神經機制之相關研究 …………………… 9
六、 研究問題……………………………………………………… 13
第二章 研究方法…………………………………………………………15
一、 受試……………………………………………………………15
二、 藥物……………………………………………………………15
三、 儀器……………………………………………………………15
四、 統計考驗……………………………………………………… 16
第三章 實驗一 …………………………………………………………… 17
步驟 ……………………………………………………………… 17
結果 ……………………………………………………………… 18
討論 ……………………………………………………………… 20
第四章 實驗二 …………………………………………………………… 22
步驟 ……………………………………………………………… 22
手術 ……………………………………………………………… 22
組織切片與染色…………………………………………………… 23
結果 ………………………………………………………………24
討論…………………………………………………………………29
第五章 綜合討論……………………………………………………………30
參考文獻 …………………………………………………………………… 42
附圖說明 ……………………………………………………………………49
附圖(圖一至圖十一) ……………………………………………………… 52
zh_TW
dc.format.extent 44136 bytes-
dc.format.extent 68671 bytes-
dc.format.extent 119964 bytes-
dc.format.extent 103830 bytes-
dc.format.extent 227165 bytes-
dc.format.extent 204665 bytes-
dc.format.extent 211480 bytes-
dc.format.extent 220046 bytes-
dc.format.extent 230209 bytes-
dc.format.extent 197015 bytes-
dc.format.extent 3567358 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093752001en_US
dc.subject (關鍵詞) 預期性對比效果zh_TW
dc.subject (關鍵詞) 延宕折扣zh_TW
dc.subject (關鍵詞) 依核核心區zh_TW
dc.subject (關鍵詞) 眶前額皮質區zh_TW
dc.subject (關鍵詞) 杏仁體基側核區zh_TW
dc.subject (關鍵詞) anticipatory contrast effecten_US
dc.subject (關鍵詞) delay discountingen_US
dc.subject (關鍵詞) nucleus accumbens coreen_US
dc.subject (關鍵詞) orbitofrontal cortexen_US
dc.subject (關鍵詞) basolateral amygdalaen_US
dc.title (題名) 探討預期性對比效果之神經機制zh_TW
dc.title (題名) Investigation of the neural mechanisms of anticipatory contrast effecten_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293-1295.zh_TW
dc.relation.reference (參考文獻) Bjork, J. M., Knutson, B., Fong, G. W., Caggiano, D. M., Bennett, S. M., & Hommer, D. W. (2004). Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. Journal of Neuroscience,24, 1793-1802.zh_TW
dc.relation.reference (參考文獻) Bohn, I., Giertler, C., & Haubert, W. (2003). Orbital prefrontal cortex and guidance of instrumental behaviour in rats under reversal conditions. Behavioural Brain Research 143, 49-56.zh_TW
dc.relation.reference (參考文獻) Cardinal, R. N. (2006). Neural systems implicated in delayed and probabilistic reinforcement. Neural Networks, 19, 1277-1301.zh_TW
dc.relation.reference (參考文獻) Cardinal, R. N., & Howes, N. J. (2005). Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neuroscience, 6, 37.zh_TW
dc.relation.reference (參考文獻) Cardinal, R. N., Pennicott, D. R., Sugathapala, C. L., Robbins, T. W., & Everitt, B. J. (2001). Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science, 292, 2499-2501.zh_TW
dc.relation.reference (參考文獻) Cromwell, H. C., & Schultz, W. (2003). Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. Journal of Neurophysiology, 89, 2823-2838.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F. (1982). Incentive contrast: A review of behavioral changes following shift in reward. Animal Learning & Behavior, 10, 409-440.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F. (1996). Incentive relativity. Cambridge, England: Cambridge University Press.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., & Checke, S. (1982). Anticipation of incentive gain. Animal Learning & Behavior, 10, 177-182.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., Coppotelli, C., Grigson, P. S., Mitchell, C., & Flaherty, J. E. (1995). Investigation of the devaluation interpretation of anticipatory negative contrast. Journal of Experimental Psychology: Animal Behavior Processes, 21, 229-247.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., Grigson, P. S., Checke, S., & Hnat, K. C. (1991). Deprivation state and temporal horizons in anticipatory contrast. Journal of Experimental Psychology: Animal Behavior Processes, 17, 503-518.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., Grigson, P. S., Coppotelli, C., & Mitchell, C. (1996). Anticipatory contrast as a function of access time and spatial location of saccharin and sucrose solutions. Animal Learning & Behavior, 24, 68-81.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., Grigson, P. S., & Lind, S. (1990). Chlordiazepoxide and the moderation of the initial response to reward reduction. The Quarterly Journal of Experimental Psychology, 42B, 87-105.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., & Rowan, G. A. (1985). Anticipatory contrast: within-subjects analysis. Animal Learning & Behavior, 13, 2-5.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., & Rowan, G. A. (1986). Successive, simultaneous, and anticipatory contrast in the consumption of saccharin solutions. Journal of Experimental Psychology: Animal Behavior Processes, 12, 381-393.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., & Rowan, G. A. (1988). Effect of intersolution interval, chlordiazepoxide and amphetamine on anticipatory contrast. Animal Learning & Behavior, 16, 47-52.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., Rowan, G. A., Emerich, D., & Walsh, T. (1989). Effects of intra-hippocampal administration of colchicines on incentive contrast and on radial maze performance. Behavioral Neuroscience, 103, 319-328.zh_TW
dc.relation.reference (參考文獻) Flaherty, C. F., Turovsky, J., & Krauss, K. L. (1994). Relative hedonic value modulates anticipatory contrast. Physiology & Behavior, 55, 1047-1054.zh_TW
dc.relation.reference (參考文獻) Gallagher, M., McMahan, R.W., and Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. Journal of Neuroscience, 19, 6610-6614.zh_TW
dc.relation.reference (參考文獻) Gilbert, P. E., & Kesner, R. P. (2002). The amygdala but not the hippocampus is involved in pattern separation based on reward value. Neurobiology of Learning and Memory, 77, 338-353.zh_TW
dc.relation.reference (參考文獻) Grigson, P. S. (1997). Conditioned Taste Aversions and Drugs of Abuse: A Reinterpretation. Behavioral Neuroscience, 111, 129-136.zh_TW
dc.relation.reference (參考文獻) Grigson, P. S. (2000). Drug of abuse and reward comparison: a brief review. Appetite, 35, 89-91.zh_TW
dc.relation.reference (參考文獻) Grigson, P. S. (2002). Like drugs for chocolate: Separate rewards modulated by common mechanisms?. Physiology & Behavior, 76, 389-395.zh_TW
dc.relation.reference (參考文獻) Hikosaka, K., & Watanabe, M. (2000). Delay activity of orbito and lateral prefrontal neurons of monkey varying with different rewards. Cerebral Cortex, 10, 263-271.zh_TW
dc.relation.reference (參考文獻) Ho, M. Y., Mobini, S., Chiang, T. J., Bradshaw, C. M., & Szabadi, E. (1999). Theory and method in the quantitative analysis of “impulsive choice” behaviour: implications for psychopharmacology. Psychopharmacology, 146, 362-372.zh_TW
dc.relation.reference (參考文獻) Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14, 148-155.zh_TW
dc.relation.reference (參考文獻) Kesner, R. P., & Gilbert, P. E. (2007). The role of agranular insular cortex in anticipation of reward contrast. Neurobiology of Learning and Memory, 88, 82-86.zh_TW
dc.relation.reference (參考文獻) Kheramin, S., Body, S., Ho, M. Y., Velazquez-Martinez, D. N., Bradshaw, C. M., Szabadi, E., Deakin, J. F. W., & Anderson, I. M. (2003). Role of the orbital prefrontal cortex in choice between delayed and uncertain reinforcers: a quantitative analysis. Behavioural Processes, 64, 239-250.zh_TW
dc.relation.reference (參考文獻) Leszczuk, M. H., & Flaherty, C. F. (2000). Lesions of nucleus accumbens reduce instrumental but not consummatory negative contrast in rats. Behavioural Brain Research, 116, 61-79.zh_TW
dc.relation.reference (參考文獻) Liao, R. M., & Chuang, F. J. (2003). Differential effects of diazepam infused into the amygdala and hippocampus on negative contrast. Pharmacology, Biochemistry & Behavior, 74, 953-960.zh_TW
dc.relation.reference (參考文獻) Lucas, G. A., Gawley, D. J., & Timberlake, W. (1988). Anticipatory contrast as a measure of time horizons in the rat: Some methodological determinants. Animal Learning & Behavior, 16, 377-382.zh_TW
dc.relation.reference (參考文獻) Lucas, G. A., Timberlake, W., Gawley, D. J., & Drew, J. (1990). Anticipation of future food: Suppression and facilitation of saccharin intake depending on the delay and type of future food. Journal of Experimental Psychology: Animal Behavior Processes, 16, 169-177.zh_TW
dc.relation.reference (參考文獻) McDonald, A. J. (1991). Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience, 44, 1-14.zh_TW
dc.relation.reference (參考文獻) Mitchell, C., & Flaherty, C. F. (1998). Temporal dynamics of corticosterone elevation in successive negative contrast. Physiology & Behavior, 64, 287-292.zh_TW
dc.relation.reference (參考文獻) Miyazaki, K., Mogi, E., Araki, N., & Matsumoto, G. (1998). Reward-quality dependent anticipation in rat nucleus accumbens. Neuroreport, 9, 3943-3948.zh_TW
dc.relation.reference (參考文獻) Mobini, S., Body, S., Ho, M. Y., Bradshaw, C. M., Szabadi, E., Deakin, J. F., & Anderson, I. M. (2002). Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology, 160, 290-298.zh_TW
dc.relation.reference (參考文獻) Moss, N. D., Clarke, J. C., & Kehoe, E. J. (2002). Paradoxical effects of hedonic disparities in negative anticipatory contrast. Physiology & Behavior, 75, 435-442.zh_TW
dc.relation.reference (參考文獻) Ongur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and himans. Cerebral Cortex, 10, 206-219.zh_TW
dc.relation.reference (參考文獻) Papini, M. R. (2003). Comparative psychology of surprising nonreward. Brain, Behavior and Evolution, 62, 83-95.zh_TW
dc.relation.reference (參考文獻) Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates 6th edition. Australia: Academic Press.zh_TW
dc.relation.reference (參考文獻) Pothuizen, H. H., Jongen-Relo, A. L., Feldon, J., & Yee, B. K. (2005). Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. European Journal of Neuroscience, 22, 2605-2616.zh_TW
dc.relation.reference (參考文獻) Ragozzino, M. E., & Kesner, R. P. (1999). The role of the agranular insular cortex in working memory for food reward value and allocentric space in rats. Behavioural Brain Research, 98, 103-112.zh_TW
dc.relation.reference (參考文獻) Reilly, S., Bornovalova, M., & Trifunovic, R. (2004). Excitotoxic lesions of the gustatory thalamus spare simultaneous contrast effects but eliminate anticipatory negative contrast: Evidence against a memory deficit. Behavioral Neuroscience, 118, 365-376.zh_TW
dc.relation.reference (參考文獻) Reilly, S., & Pritchard, T. C. (1996). Gustatory thalamus lesions in the Rat: II. Aversive and appetitive taste conditioning. Behavioral Neuroscience, 110, 746-759.zh_TW
dc.relation.reference (參考文獻) Roesch, M. R., Taylor, A. R., & Schoenbaum, G. (2006). Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron, 51, 509-520.zh_TW
dc.relation.reference (參考文獻) Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284-294.zh_TW
dc.relation.reference (參考文獻) Schoenbaum, G., Chiba, A. A., & Gallagher, M. (1998). Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience, 1, 155-159.zh_TW
dc.relation.reference (參考文獻) Schoenbaum, G., Setlow, B., & Ramus, S. J. (2003). A systems approach to orbitofrontal cortex function: recordings in rat orbitofrontal cortex reveal interactions with different learning systems. Behavioural Brain Research, 146, 19-29.zh_TW
dc.relation.reference (參考文獻) Schoenbaum, G., Setlow, B., Saddoris, M. P., & Gallagher, M. (2003). Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdale. Neuron, 39, 855-867.zh_TW
dc.relation.reference (參考文獻) Schroy, P. L., Wheeler, R. A., Davidson, C., Scalera, G., Twining, R. C., & Grigson, P. S. (2005). Role of gustatory thalamus in anticipation and comparison of rewards over time in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288, 966-990.zh_TW
dc.relation.reference (參考文獻) Schultz, W., Apicella, P., Scarnati, E., & Ljungberg, T. (1992). Neuronal activity in monkey ventral striatum related to the expectation of reward. The Journal of Neuroscience, 12, 4595-4610.zh_TW
dc.relation.reference (參考文獻) Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate Orbitofrontal cortex. Nature, 398, 704-708.zh_TW
dc.relation.reference (參考文獻) Winstanley, C. A., Theobald, D. E., Cardinal, R. N., & Robbins, T. W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. Journal of Neuroscience, 24, 4718-4722.zh_TW