學術產出-學位論文

題名 以時間關聯的操作式制約行為探討韁核的功能
Function of the Habenula: Mesured by Operant Conditioned Behavior Based on Temporal Contingency
作者 江峰逵
CHIANG, FENG-KUEI
貢獻者 廖瑞銘
江峰逵
CHIANG, FENG-KUEI
關鍵詞 區辨性增強低頻反應作業
固定時距作業
增強時制
鵝膏蕈酸
習得與表現
行為轉換
differential reinforcement of low-rates responding task
fixed-interval task
schedule of reinforcement
ibotenic acid
acquisition and performance
behavioral transition
日期 2005
上傳時間 17-九月-2009 13:22:05 (UTC+8)
摘要 本研究利用兩種時間關聯之操作式制約行為作業探討韁核的行為功能,一為區辨性增強低頻反應作業(簡稱DRL作業),另一為固定時距作業(簡稱FI作業)。本研究以神經毒素鵝膏蕈酸(ibotenic acid)破壞韁核的方式來測試大白鼠受試在上述行為作業之不同歷程的影響效果,包含習得歷程、行為表現階段以及已習得後轉換得酬賞之反應標準等三個階段。實驗一的結果顯示破壞韁核對於DRL作業的習得歷程具有明顯的影響,其影響效果在DRL短時距作業中造成無法以有效率的壓桿反應模式獲得酬賞;反之,破壞操弄的效果並不影響FI長與短時距作業的習得歷程。實驗二的結果顯示破壞韁核並不影響已習得的DRL作業與FI作業的行為表現,兩項作業的實驗組受試皆能維持穩定的行為反應模式且與控制組無明顯差異。實驗三對已習得的DRL行為進行時距參數的轉換(含調高及降低兩部份),結果顯示破壞韁核之操弄並未明顯的影響這項轉換新的時距之作業要求,但實驗組受試的確比控制組較遲緩達到新的時距要求。綜合而言,本研究以專屬性較高的神經毒素破壞韁核,用較多元指標的行為分析方式探討韁核的行為功能;其結果發現韁核參與DRL行為內含的區辨學習與對於錯誤偵測的負向迴饋,這些功能是需要透過韁核與其他中腦及邊緣系統的組織互動。
This study examined the function of habenula (Hb) by two kinds of operant conditioned behavior tasks based on temporal contingency, including the differential reinforcement of low-rate responding (DRL) task and fixed-interval (FI) task. The effects of Hb lesion induced by neurotoxin ibotenic acid were examined at the different stages of operant conditioned behavior, including acquisition, performance, and transition stages. The results showed that bilateral lesions of Hb did not affect the locomotor activity and the basic lever-pressing. In Experiment 1, Hb lesion group had less reinforced responses and lower peak time indicating the deficits of acquisition of the DRL task. In contrast, the same lesion manipulation on the FI task did not produce any difference between the lesion group and the control group. The data of Experiment 2 showed that Hb lesion did not significantly affect the learned behavior maintained on DRL-10s or FI-30s schedule. In Experiment 3, Hb lesion produced a subtle, but not significant, impairment on behavioral transition from a learned interval to a newly-set interval (upward or downward). The lesioned subjects made a slower transition than the controls. In conclusion, these data suggest that the function of habenula is involved in discrimination learning and error detection for acquiring DRL behavior. However, it is likely that these Hb functions have to rely upon dynamic relationship between Hb and other midbrain limbic systems.
參考文獻 鄭瑞光(2000)。「大腦多巴胺系統在大鼠操作式制約行為中所扮演的角色:以 "時間為主」。未發表之碩士學位論文,國立政治大學心理系。
Andres, K. H., von During, M., & Veh, R. W. (1999). Subnuclear organization of the rat habenular complexes. Journal of Comparative Neurology, 407, 130-150.
Balcells-Olivero, M., Richard, J. B., & Seiden, L. S. (1997). Sensitization to amphetamine on the differential-reinforcement-of-low-rate 72-s schedule. Psychopharmacology, 133, 207-213.
Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology, 37, 407-419.
Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6, 755-765.
Chang, Y. H., Liao, R. M., Lan, C. H., & Shen, Y. L. (2000). Operant performance following tail-pinch in the rat: effects of d-Amphetamine. Chinese Journal of Physiology, 43, 105-111.
Carvey, P. M., Kao, L. C., & Klawans, H. L. (1987). The effect of bilateral kainic acid-induced lateral habenula lesions on dopamine-mediated behaviors. Brain Research, 490, 193-196.
Cheng, R. K., MacDonald, C. J., Williams, C. L., & Meck, W. H. (2005). Prenatal choline availability alters timing, emotion, and memory performance of adult rats as indexed by the DRL procedure. Abstract (no. 653.6), Society for Neuroscience.
Christoph, G. R., Leonzio, R. J., & Wilcox, K. S. (1986). Stimulation of the lateral habenula nhibits dopamine-Containing Neurons in the substantia nigra and ventral tegmental area of the rat. Journal of Neuroscience. 6, 613-619.
Ellison, G. (1994). Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Research Reviews, 19, 223-229.
Engber, T., Susel, Z., Kuo, S., & Chase, T. (1990). Chronic levodopa treatment alters basal and dopamine agonist-stimulated cerebral glucose utilization. Journal of Neuroscience, 10, 3889-3895.
Evans, J. A. C., & Thornton, E. W. (1984). Impaired acquisition of DRL operant responding following lesion of the habenular nucleus. Physiological Psychology, 12, 220-226.
Ferster, C. B., & Skinner, B. F. (1957). Schedules of Reinforcement. New York: Appleton-Century-Crofts.
Heldt, S. A., & Ressler, K. J. (2006). Lesions of the habenula produce stress- and dopamine-dependent alternations in prepulse inhibition and locomotion. Brain Research, 1073-1074, 229-239.
Herkenham, M., & Nauta, W. J. (1977). Afferent connections of the habenular nuclei in the rat: A horseradish peroxidase study, with a note on the fiber-of-passage problem. Journal of Comparative Nuerology, 173, 123-146.
Herkenham, M., & Nauta, W. J. (1979). Efferent connections of the habenular nuclei in the rat. Journal of Comparative Nuerology, 187, 19-48.
Higa, J. J., Moreno, S., & Sparkman, N. (2002). Interval timing in rats: tracking unsignaled changes in the fixed interval schedule requirement. Behavioral Processes, 58, 167-176.
Kim, U., & Chang, S. Y. (2005). Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus. The Journal of comparative of Neurology, 483, 236-250.
Klemm, W. R. (2004) Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Medical Science Monitor, 10, 261-273.
Kramer, T. J., & Rilling, M. (1970). Differential reinforcement of low rates: A selective critique. Psychological Bulletin, 74, 225-254.
Lecourtier, L., & Kelly, P. H. (2005). Bilateral lesions of the habenula induced attentional disturbances in rats. Neuropsychopharmacology, 30, 484-496.
Lee, H. Y., & Huang, S. L. (1988). Role of lateral habenula in the regulation of exploratory behavior and its relationship to stress in rats. Behavioural Brain Research, 30, 265-271.
Liao, R. M., & Cheng, R. K. (2005). Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: comparison with selective dopamine receptor antagonists. Chinese Journal of Physiology, 48, 41-50.
Lisoprawski, A., Herve, D., Blanc, G., Glowinski, J., & Tassin, J. (1980). Selective activation of the mesocortico-frontal dopaminergic neurons induced by lesions of the habenula in the rat. Brain Research, 183, 229-234.
MacDougall, J. M. & Van Hoesen, G. W. (1969). Anatomical organization of septal projection in maintenance of DRL behavior in rats. Journal of Comparative and Physiological Psychology, 68, 568-575.
Maricq, A. V., Roberts, S., & Church, R. M. (1981). Methamphetamine and time estimation. Journal of the Experimental Psychology: Animal and Behavior, 7, 18-30.
Matell M. S., snd Meck, W. H. (2000). Neurospsychologucal mechanism of interval timing behavior. BioEssays. 22, 94-103.
McCulloch, J., Savaki, H., & Sokoloff, L. (1980). Influence of dopaminergic systems on the habenular nucleus of the rat. Brain research, 194, 117-124.
Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227-242.
Meck, W. H., & Benson, A. M. (2002). Dissecting the Brain’s internal clock: how frontal-striatal circuitry keeps time and shifts attention. Brain and Cognition, 48, 195-211.
Neill, D. B. (1976). Frontal-striatal control of behavioral inhibition in the rat. Brain Research, 105, 89-103.
Paxino, G., & Watson, C. (1986). The rat brain stereotaxic coordinates. San Diego: Academic Press.
Sandyk, R. (1991) Relevance of the habenular complex to neuropsychiatry: a review and hypothesis. International Journal of Neuroscience, 61, 189-219.
Schneider, B. A. (1969). A two-analysis of fixed-interval responding in the pigeon. Journal of the Experimental Analysis of Behavior, 12, 677-687.
Seiden, L.S., Sabol, K.E., & Ricaurte, G.A. (1993). Amphetamine: effects on catecholamine systems and behavior. Annual Review of Pharmacology and Toxicology, 33, 639-677.
Sharkey, J., McBean, D., & Kelly, P. (1991). Acute cocaine administration: effects on local cerebral blood flow and metabolic demand in the rat. Brain Research, 548, 310-314.
Sinden, J. D., Rawlins, J. N. P., Gray, J. A., & Jarrard, L. E. (1986). Selective Cytotoxic Lesions of the Hippocampal Formation and DRL Performance in Rats. Behavioral Neuroscience, 100, 320-329.
Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century.
Sutherland, R. J. (1982). The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neuroscience and Biobehavioral Reviews, 6, 1-13.
Thornton, E. W., Bradbury, G. E., Wickens, A. P., Mottram, D. R., & McClelland, R. (1990). Intra-habenular injection of 6-hydroxydopamine procedures impaired acquisition of DRL operant behavior. Behavioral and Neural Biology, 53, 291-297.
Thornton, E. W., & Evans, J. A. C. (1982). The role of habenular nuclei in the selection of behavioral strategies. Physiological Psychology, 10, 361-367.
Thornton, E. W., & Evans, J. A. C. (1991). A water-maze discrimination learning deficit in the rat following lesion of the habenula. Physiology and Behavior, 49, 819-822.
Thornton, E. W., Evans, J. A. C., & Wickens, A. (1987). Changes in motor activities induced by microinjections of the selective dopamine agonists
LY171555, quinpirole hydrochlodride, and SK&F38393 into the habenula nucleus. Pharmacology Biochemistry and Behavior, 26, 643-646.
Ullsperger, M., & von Cramon, D. Y. (2003). Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulated motor area revealed by functional magnetic resonance imaging. The Journal of Neuroscience, 23, 4308-4314.
Wilcox, K. S., Christoph, G. R., Double, B. A., & Leonzio, R. J. (1986). Kainate and electrolytic lesions of the lateral habenula: effect on avoidance responses. Physiology and Behavior, 36, 413-417.
Wiley, J. L., Compton, A. D., & Golden, K. M. (2000). Separation of drug effects on timing and behavioral inhibition by increases stimulus control. Experimental and Clinical Psychopharmacology, 8, 451-461.
Wirtshafter, D., & Kreds, J. C. (1997). Interactive effects of stimulation of D1 and D2 dopamine receptors on Fos expression in the lateral habenula. Brain Research, 750, 245-250.
Zelier, M. D. (1977). Schedules of reinforcement: the controlling variables. In W. K. Honig and J. E. R. Staddon (Eds.), Handbook of operant behavior (pp. 201-232). Englewood Cliffs, N.J.: Prentice-Hall.
描述 碩士
國立政治大學
心理學研究所
92752005
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0927520051
資料類型 thesis
dc.contributor.advisor 廖瑞銘zh_TW
dc.contributor.author (作者) 江峰逵zh_TW
dc.contributor.author (作者) CHIANG, FENG-KUEIen_US
dc.creator (作者) 江峰逵zh_TW
dc.creator (作者) CHIANG, FENG-KUEIen_US
dc.date (日期) 2005en_US
dc.date.accessioned 17-九月-2009 13:22:05 (UTC+8)-
dc.date.available 17-九月-2009 13:22:05 (UTC+8)-
dc.date.issued (上傳時間) 17-九月-2009 13:22:05 (UTC+8)-
dc.identifier (其他 識別碼) G0927520051en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32538-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 心理學研究所zh_TW
dc.description (描述) 92752005zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 本研究利用兩種時間關聯之操作式制約行為作業探討韁核的行為功能,一為區辨性增強低頻反應作業(簡稱DRL作業),另一為固定時距作業(簡稱FI作業)。本研究以神經毒素鵝膏蕈酸(ibotenic acid)破壞韁核的方式來測試大白鼠受試在上述行為作業之不同歷程的影響效果,包含習得歷程、行為表現階段以及已習得後轉換得酬賞之反應標準等三個階段。實驗一的結果顯示破壞韁核對於DRL作業的習得歷程具有明顯的影響,其影響效果在DRL短時距作業中造成無法以有效率的壓桿反應模式獲得酬賞;反之,破壞操弄的效果並不影響FI長與短時距作業的習得歷程。實驗二的結果顯示破壞韁核並不影響已習得的DRL作業與FI作業的行為表現,兩項作業的實驗組受試皆能維持穩定的行為反應模式且與控制組無明顯差異。實驗三對已習得的DRL行為進行時距參數的轉換(含調高及降低兩部份),結果顯示破壞韁核之操弄並未明顯的影響這項轉換新的時距之作業要求,但實驗組受試的確比控制組較遲緩達到新的時距要求。綜合而言,本研究以專屬性較高的神經毒素破壞韁核,用較多元指標的行為分析方式探討韁核的行為功能;其結果發現韁核參與DRL行為內含的區辨學習與對於錯誤偵測的負向迴饋,這些功能是需要透過韁核與其他中腦及邊緣系統的組織互動。zh_TW
dc.description.abstract (摘要) This study examined the function of habenula (Hb) by two kinds of operant conditioned behavior tasks based on temporal contingency, including the differential reinforcement of low-rate responding (DRL) task and fixed-interval (FI) task. The effects of Hb lesion induced by neurotoxin ibotenic acid were examined at the different stages of operant conditioned behavior, including acquisition, performance, and transition stages. The results showed that bilateral lesions of Hb did not affect the locomotor activity and the basic lever-pressing. In Experiment 1, Hb lesion group had less reinforced responses and lower peak time indicating the deficits of acquisition of the DRL task. In contrast, the same lesion manipulation on the FI task did not produce any difference between the lesion group and the control group. The data of Experiment 2 showed that Hb lesion did not significantly affect the learned behavior maintained on DRL-10s or FI-30s schedule. In Experiment 3, Hb lesion produced a subtle, but not significant, impairment on behavioral transition from a learned interval to a newly-set interval (upward or downward). The lesioned subjects made a slower transition than the controls. In conclusion, these data suggest that the function of habenula is involved in discrimination learning and error detection for acquiring DRL behavior. However, it is likely that these Hb functions have to rely upon dynamic relationship between Hb and other midbrain limbic systems.en_US
dc.description.tableofcontents 中文摘要.........................................................................................................................i
英文摘要........................................................................................................................ii
目次.…………………………………………………………………………………..iii
附表目次........................................................................................................................v
附圖目次.......................................................................................................................vi
中、英譯詞對照表.....................................................................................................viii
第一章 研究背景.......................................................................................................1
一、 前言....................................................................................................................1
二、 操作式制約行為作業........................................................................................1
三、 背側間腦傳導系統............................................................................................3
四、 研究目的及實驗設計........................................................................................7
第二章 研究方法.......................................................................................................9
一、 受試者................................................................................................................9
二、 實驗儀器............................................................................................................9
三、 藥物..................................................................................................................11
四、 操作式壓桿行為訓練的基本實驗程序..........................................................11
五、 腦部破壞手術..................................................................................................12
六、 組織學檢驗......................................................................................................13
七、 統計方法..........................................................................................................13
第三章 實驗一、中樞破壞韁核對於學習DRL作業與FI作業的影響.............15
一、目的..................................................................................................................15
二、步驟..................................................................................................................15
三、統計結果..........................................................................................................16
四、討論..................................................................................................................19
第四章 實驗二、中樞破壞韁核對於已習得DRL作業與FI作業行為表現的影響.................................................................................................................22
一、目的...................................................................................................................22
二、步驟...................................................................................................................22
三、統計結果...........................................................................................................23
四、討論...................................................................................................................24
第五章 實驗三、中樞破壞韁核對於DRL時距參數轉換後的行為調整的影響..26
一、目的...................................................................................................................26
二、步驟...................................................................................................................26
三、統計結果...........................................................................................................27
四、討論...................................................................................................................29
第六章 綜合討論.....................................................................................................31
一、不同中樞破壞韁核方式的影響差異................................................................31
二、DRL作業的行為表現與韁核破壞的關係.....................................................32
三、時間關聯之操作式制約行為作業與韁核的關係..........................................33
四、破壞韁核對於習得歷程或是計時歷程的影響..............................................36
五、結論:韁核的行為功能..................................................................................37
參考文獻......................................................................................................................39
附圖..............................................................................................................................43
zh_TW
dc.format.extent 46416 bytes-
dc.format.extent 65049 bytes-
dc.format.extent 76181 bytes-
dc.format.extent 95447 bytes-
dc.format.extent 61115 bytes-
dc.format.extent 164475 bytes-
dc.format.extent 213601 bytes-
dc.format.extent 131755 bytes-
dc.format.extent 105064 bytes-
dc.format.extent 113378 bytes-
dc.format.extent 149045 bytes-
dc.format.extent 60380 bytes-
dc.format.extent 7688590 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0927520051en_US
dc.subject (關鍵詞) 區辨性增強低頻反應作業zh_TW
dc.subject (關鍵詞) 固定時距作業zh_TW
dc.subject (關鍵詞) 增強時制zh_TW
dc.subject (關鍵詞) 鵝膏蕈酸zh_TW
dc.subject (關鍵詞) 習得與表現zh_TW
dc.subject (關鍵詞) 行為轉換zh_TW
dc.subject (關鍵詞) differential reinforcement of low-rates responding tasken_US
dc.subject (關鍵詞) fixed-interval tasken_US
dc.subject (關鍵詞) schedule of reinforcementen_US
dc.subject (關鍵詞) ibotenic aciden_US
dc.subject (關鍵詞) acquisition and performanceen_US
dc.subject (關鍵詞) behavioral transitionen_US
dc.title (題名) 以時間關聯的操作式制約行為探討韁核的功能zh_TW
dc.title (題名) Function of the Habenula: Mesured by Operant Conditioned Behavior Based on Temporal Contingencyen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 鄭瑞光(2000)。「大腦多巴胺系統在大鼠操作式制約行為中所扮演的角色:以 "時間為主」。未發表之碩士學位論文,國立政治大學心理系。zh_TW
dc.relation.reference (參考文獻) Andres, K. H., von During, M., & Veh, R. W. (1999). Subnuclear organization of the rat habenular complexes. Journal of Comparative Neurology, 407, 130-150.zh_TW
dc.relation.reference (參考文獻) Balcells-Olivero, M., Richard, J. B., & Seiden, L. S. (1997). Sensitization to amphetamine on the differential-reinforcement-of-low-rate 72-s schedule. Psychopharmacology, 133, 207-213.zh_TW
dc.relation.reference (參考文獻) Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology, 37, 407-419.zh_TW
dc.relation.reference (參考文獻) Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6, 755-765.zh_TW
dc.relation.reference (參考文獻) Chang, Y. H., Liao, R. M., Lan, C. H., & Shen, Y. L. (2000). Operant performance following tail-pinch in the rat: effects of d-Amphetamine. Chinese Journal of Physiology, 43, 105-111.zh_TW
dc.relation.reference (參考文獻) Carvey, P. M., Kao, L. C., & Klawans, H. L. (1987). The effect of bilateral kainic acid-induced lateral habenula lesions on dopamine-mediated behaviors. Brain Research, 490, 193-196.zh_TW
dc.relation.reference (參考文獻) Cheng, R. K., MacDonald, C. J., Williams, C. L., & Meck, W. H. (2005). Prenatal choline availability alters timing, emotion, and memory performance of adult rats as indexed by the DRL procedure. Abstract (no. 653.6), Society for Neuroscience.zh_TW
dc.relation.reference (參考文獻) Christoph, G. R., Leonzio, R. J., & Wilcox, K. S. (1986). Stimulation of the lateral habenula nhibits dopamine-Containing Neurons in the substantia nigra and ventral tegmental area of the rat. Journal of Neuroscience. 6, 613-619.zh_TW
dc.relation.reference (參考文獻) Ellison, G. (1994). Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Research Reviews, 19, 223-229.zh_TW
dc.relation.reference (參考文獻) Engber, T., Susel, Z., Kuo, S., & Chase, T. (1990). Chronic levodopa treatment alters basal and dopamine agonist-stimulated cerebral glucose utilization. Journal of Neuroscience, 10, 3889-3895.zh_TW
dc.relation.reference (參考文獻) Evans, J. A. C., & Thornton, E. W. (1984). Impaired acquisition of DRL operant responding following lesion of the habenular nucleus. Physiological Psychology, 12, 220-226.zh_TW
dc.relation.reference (參考文獻) Ferster, C. B., & Skinner, B. F. (1957). Schedules of Reinforcement. New York: Appleton-Century-Crofts.zh_TW
dc.relation.reference (參考文獻) Heldt, S. A., & Ressler, K. J. (2006). Lesions of the habenula produce stress- and dopamine-dependent alternations in prepulse inhibition and locomotion. Brain Research, 1073-1074, 229-239.zh_TW
dc.relation.reference (參考文獻) Herkenham, M., & Nauta, W. J. (1977). Afferent connections of the habenular nuclei in the rat: A horseradish peroxidase study, with a note on the fiber-of-passage problem. Journal of Comparative Nuerology, 173, 123-146.zh_TW
dc.relation.reference (參考文獻) Herkenham, M., & Nauta, W. J. (1979). Efferent connections of the habenular nuclei in the rat. Journal of Comparative Nuerology, 187, 19-48.zh_TW
dc.relation.reference (參考文獻) Higa, J. J., Moreno, S., & Sparkman, N. (2002). Interval timing in rats: tracking unsignaled changes in the fixed interval schedule requirement. Behavioral Processes, 58, 167-176.zh_TW
dc.relation.reference (參考文獻) Kim, U., & Chang, S. Y. (2005). Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus. The Journal of comparative of Neurology, 483, 236-250.zh_TW
dc.relation.reference (參考文獻) Klemm, W. R. (2004) Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Medical Science Monitor, 10, 261-273.zh_TW
dc.relation.reference (參考文獻) Kramer, T. J., & Rilling, M. (1970). Differential reinforcement of low rates: A selective critique. Psychological Bulletin, 74, 225-254.zh_TW
dc.relation.reference (參考文獻) Lecourtier, L., & Kelly, P. H. (2005). Bilateral lesions of the habenula induced attentional disturbances in rats. Neuropsychopharmacology, 30, 484-496.zh_TW
dc.relation.reference (參考文獻) Lee, H. Y., & Huang, S. L. (1988). Role of lateral habenula in the regulation of exploratory behavior and its relationship to stress in rats. Behavioural Brain Research, 30, 265-271.zh_TW
dc.relation.reference (參考文獻) Liao, R. M., & Cheng, R. K. (2005). Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: comparison with selective dopamine receptor antagonists. Chinese Journal of Physiology, 48, 41-50.zh_TW
dc.relation.reference (參考文獻) Lisoprawski, A., Herve, D., Blanc, G., Glowinski, J., & Tassin, J. (1980). Selective activation of the mesocortico-frontal dopaminergic neurons induced by lesions of the habenula in the rat. Brain Research, 183, 229-234.zh_TW
dc.relation.reference (參考文獻) MacDougall, J. M. & Van Hoesen, G. W. (1969). Anatomical organization of septal projection in maintenance of DRL behavior in rats. Journal of Comparative and Physiological Psychology, 68, 568-575.zh_TW
dc.relation.reference (參考文獻) Maricq, A. V., Roberts, S., & Church, R. M. (1981). Methamphetamine and time estimation. Journal of the Experimental Psychology: Animal and Behavior, 7, 18-30.zh_TW
dc.relation.reference (參考文獻) Matell M. S., snd Meck, W. H. (2000). Neurospsychologucal mechanism of interval timing behavior. BioEssays. 22, 94-103.zh_TW
dc.relation.reference (參考文獻) McCulloch, J., Savaki, H., & Sokoloff, L. (1980). Influence of dopaminergic systems on the habenular nucleus of the rat. Brain research, 194, 117-124.zh_TW
dc.relation.reference (參考文獻) Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227-242.zh_TW
dc.relation.reference (參考文獻) Meck, W. H., & Benson, A. M. (2002). Dissecting the Brain’s internal clock: how frontal-striatal circuitry keeps time and shifts attention. Brain and Cognition, 48, 195-211.zh_TW
dc.relation.reference (參考文獻) Neill, D. B. (1976). Frontal-striatal control of behavioral inhibition in the rat. Brain Research, 105, 89-103.zh_TW
dc.relation.reference (參考文獻) Paxino, G., & Watson, C. (1986). The rat brain stereotaxic coordinates. San Diego: Academic Press.zh_TW
dc.relation.reference (參考文獻) Sandyk, R. (1991) Relevance of the habenular complex to neuropsychiatry: a review and hypothesis. International Journal of Neuroscience, 61, 189-219.zh_TW
dc.relation.reference (參考文獻) Schneider, B. A. (1969). A two-analysis of fixed-interval responding in the pigeon. Journal of the Experimental Analysis of Behavior, 12, 677-687.zh_TW
dc.relation.reference (參考文獻) Seiden, L.S., Sabol, K.E., & Ricaurte, G.A. (1993). Amphetamine: effects on catecholamine systems and behavior. Annual Review of Pharmacology and Toxicology, 33, 639-677.zh_TW
dc.relation.reference (參考文獻) Sharkey, J., McBean, D., & Kelly, P. (1991). Acute cocaine administration: effects on local cerebral blood flow and metabolic demand in the rat. Brain Research, 548, 310-314.zh_TW
dc.relation.reference (參考文獻) Sinden, J. D., Rawlins, J. N. P., Gray, J. A., & Jarrard, L. E. (1986). Selective Cytotoxic Lesions of the Hippocampal Formation and DRL Performance in Rats. Behavioral Neuroscience, 100, 320-329.zh_TW
dc.relation.reference (參考文獻) Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century.zh_TW
dc.relation.reference (參考文獻) Sutherland, R. J. (1982). The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neuroscience and Biobehavioral Reviews, 6, 1-13.zh_TW
dc.relation.reference (參考文獻) Thornton, E. W., Bradbury, G. E., Wickens, A. P., Mottram, D. R., & McClelland, R. (1990). Intra-habenular injection of 6-hydroxydopamine procedures impaired acquisition of DRL operant behavior. Behavioral and Neural Biology, 53, 291-297.zh_TW
dc.relation.reference (參考文獻) Thornton, E. W., & Evans, J. A. C. (1982). The role of habenular nuclei in the selection of behavioral strategies. Physiological Psychology, 10, 361-367.zh_TW
dc.relation.reference (參考文獻) Thornton, E. W., & Evans, J. A. C. (1991). A water-maze discrimination learning deficit in the rat following lesion of the habenula. Physiology and Behavior, 49, 819-822.zh_TW
dc.relation.reference (參考文獻) Thornton, E. W., Evans, J. A. C., & Wickens, A. (1987). Changes in motor activities induced by microinjections of the selective dopamine agonistszh_TW
dc.relation.reference (參考文獻) LY171555, quinpirole hydrochlodride, and SK&F38393 into the habenula nucleus. Pharmacology Biochemistry and Behavior, 26, 643-646.zh_TW
dc.relation.reference (參考文獻) Ullsperger, M., & von Cramon, D. Y. (2003). Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulated motor area revealed by functional magnetic resonance imaging. The Journal of Neuroscience, 23, 4308-4314.zh_TW
dc.relation.reference (參考文獻) Wilcox, K. S., Christoph, G. R., Double, B. A., & Leonzio, R. J. (1986). Kainate and electrolytic lesions of the lateral habenula: effect on avoidance responses. Physiology and Behavior, 36, 413-417.zh_TW
dc.relation.reference (參考文獻) Wiley, J. L., Compton, A. D., & Golden, K. M. (2000). Separation of drug effects on timing and behavioral inhibition by increases stimulus control. Experimental and Clinical Psychopharmacology, 8, 451-461.zh_TW
dc.relation.reference (參考文獻) Wirtshafter, D., & Kreds, J. C. (1997). Interactive effects of stimulation of D1 and D2 dopamine receptors on Fos expression in the lateral habenula. Brain Research, 750, 245-250.zh_TW
dc.relation.reference (參考文獻) Zelier, M. D. (1977). Schedules of reinforcement: the controlling variables. In W. K. Honig and J. E. R. Staddon (Eds.), Handbook of operant behavior (pp. 201-232). Englewood Cliffs, N.J.: Prentice-Hall.zh_TW