Publications-Theses

題名 Combinatorial Argument of Partition with Point, Line, and Space
點線面與空間分割的組合論證法
作者 王佑欣
Yuhsin Wang
貢獻者 張宜武
王佑欣
Yuhsin Wang
關鍵詞 Recurrence Relation
Difference Equation
Euler`s Formula
Standard Partition System of n-Dimensional
Partitioner
n-dimensional space
Combinatorial Argument
Algorithm
Bounded Region
Unbounded Region
日期 2002
上傳時間 17-Sep-2009 13:44:52 (UTC+8)
摘要 在這篇論文裡,我們將要討論一類古典的問題,這類問題已經經由許多方法解決,例如:遞迴關係式、差分方程式、尤拉公式等等。接著我們歸納低維度的特性,並藉由定義出一組方程式-標準n維空間分割系統-來推廣這些特性到一般的$n$維度空間中。然後我們利用演算法來提供一個更直接的組合論證法。最後,我們會把問題再細分成有界區域與無界區域的個數。
In this article, we will discuss a class of classical questions had been solved by Recurrence Relation, Difference Equation, and Euler`s Formula, etc.. And then, we construct a system of equations -Standard Partition System of n-Dimensional Space- to generalize the properties of maximizing the number of regions made up by k partitioner in an n-dimensional space and look into the construction of each dimension. Also, we provide a more directly Combinatorial Argument by Algorithm for this kind of question. At last, we focus on the number of bounded regions and unbounded regions in sense of maximizing the number of regions.
參考文獻 [1] Alan Tucker, Applied Combinatorics, 3rd ed., John Wiley &
Sons, New York, 1995, 281-282, 305.
[2] 簡蒼調, 續談觀察歸納法價值, 數學傳播, 第2卷第1期, 頁33-37.
[3] 何景國, 差分法及其在組合學上的應用, 數學傳播, 第10卷第1期,
頁49-51.
[4] 宋秉信, 從尤拉公式到空間的平面分割, 數學傳播, 第22卷第3期,
頁54-60.
[5] Alan Tucker, Applied Combinatorics, 3rd ed., John Wiley &
Sons, New York, 1995, 216-218.
[6] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E.
Spence, Linear Algebra, 3rd ed., Prentice-Hall, 1997, 47-48.
描述 碩士
國立政治大學
應用數學研究所
89751011
91
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0089751011
資料類型 thesis
dc.contributor.advisor 張宜武zh_TW
dc.contributor.author (Authors) 王佑欣zh_TW
dc.contributor.author (Authors) Yuhsin Wangen_US
dc.creator (作者) 王佑欣zh_TW
dc.creator (作者) Yuhsin Wangen_US
dc.date (日期) 2002en_US
dc.date.accessioned 17-Sep-2009 13:44:52 (UTC+8)-
dc.date.available 17-Sep-2009 13:44:52 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 13:44:52 (UTC+8)-
dc.identifier (Other Identifiers) G0089751011en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32558-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 89751011zh_TW
dc.description (描述) 91zh_TW
dc.description.abstract (摘要) 在這篇論文裡,我們將要討論一類古典的問題,這類問題已經經由許多方法解決,例如:遞迴關係式、差分方程式、尤拉公式等等。接著我們歸納低維度的特性,並藉由定義出一組方程式-標準n維空間分割系統-來推廣這些特性到一般的$n$維度空間中。然後我們利用演算法來提供一個更直接的組合論證法。最後,我們會把問題再細分成有界區域與無界區域的個數。zh_TW
dc.description.abstract (摘要) In this article, we will discuss a class of classical questions had been solved by Recurrence Relation, Difference Equation, and Euler`s Formula, etc.. And then, we construct a system of equations -Standard Partition System of n-Dimensional Space- to generalize the properties of maximizing the number of regions made up by k partitioner in an n-dimensional space and look into the construction of each dimension. Also, we provide a more directly Combinatorial Argument by Algorithm for this kind of question. At last, we focus on the number of bounded regions and unbounded regions in sense of maximizing the number of regions.en_US
dc.description.tableofcontents Abstract i

中文摘要 ii

1 Introduction 1
1.1 Introduction............................................1
1.2 Description of Three Original Questions.................2

2 Solved By Recurrence Relation 3
2.1 Solution by Recurrence Relation for Question 1..........3
2.2 Solution by Recurrence Relation for Question 2..........4
2.3 Solution by Recurrence Relation for Question 3..........6

3 General Question of Higher Dimensional Spaces 8
3.1 Generalizing These Three Classical Questions............8
3.2 The Properties of Point, Line, and 3-D Space............9
3.3 The Properties of General Question and Standard Partition
System of n-Dimensional Space..........................10
3.4 Proof of the Properties................................11
3.5 Solution by Recurrence Relation for General Question...15

4 Solved By Combinatorial Argument 17
4.1 Non-isomorphic of k-Max-Line-Drawing and k-Max-Plane-
Drawing................................................17
4.2 Combinatorial Argument with Algorithm..................19
4.3 Combinatorial Argument for Higher Dimensional Space with
Algorithm..............................................21
4.4 Presentation of Partitions in the Lower Dimensional
Space..................................................22
4.5 A List of All Numbers..................................25

5 Number of Bounded Regions 26
5.1 Number of Bounded Regions in Sense of k-max-point-
drawing................................................26
5.2 Number of Bounded Regions in Sense of k-max-line-
drawing................................................27
5.3 Number of Bounded Regions in Sense of k-max-plane-
drawing................................................28
5.4 Number of Bounded Regions of Higher Dimensional Space..28

6 Number of Unbounded Regions 30
6.1 Number of Unbounded Regions in Sense of k-max-point-
drawing................................................30
6.2 Number of Unbounded Regions in Sense of k-max-line-
drawing................................................31
6.3 Number of Unbounded Regions in Sense of k-max-plane-
drawing................................................31
6.4 Number of Unbounded Regions of Higher Dimensional
Space..................................................32

References 34
zh_TW
dc.format.extent 74507 bytes-
dc.format.extent 137584 bytes-
dc.format.extent 143234 bytes-
dc.format.extent 42502 bytes-
dc.format.extent 68428 bytes-
dc.format.extent 131047 bytes-
dc.format.extent 349120 bytes-
dc.format.extent 60363 bytes-
dc.format.extent 60824 bytes-
dc.format.extent 64406 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0089751011en_US
dc.subject (關鍵詞) Recurrence Relationen_US
dc.subject (關鍵詞) Difference Equationen_US
dc.subject (關鍵詞) Euler`s Formulaen_US
dc.subject (關鍵詞) Standard Partition System of n-Dimensionalen_US
dc.subject (關鍵詞) Partitioneren_US
dc.subject (關鍵詞) n-dimensional spaceen_US
dc.subject (關鍵詞) Combinatorial Argumenten_US
dc.subject (關鍵詞) Algorithmen_US
dc.subject (關鍵詞) Bounded Regionen_US
dc.subject (關鍵詞) Unbounded Regionen_US
dc.title (題名) Combinatorial Argument of Partition with Point, Line, and Spacezh_TW
dc.title (題名) 點線面與空間分割的組合論證法zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Alan Tucker, Applied Combinatorics, 3rd ed., John Wiley &zh_TW
dc.relation.reference (參考文獻) Sons, New York, 1995, 281-282, 305.zh_TW
dc.relation.reference (參考文獻) [2] 簡蒼調, 續談觀察歸納法價值, 數學傳播, 第2卷第1期, 頁33-37.zh_TW
dc.relation.reference (參考文獻) [3] 何景國, 差分法及其在組合學上的應用, 數學傳播, 第10卷第1期,zh_TW
dc.relation.reference (參考文獻) 頁49-51.zh_TW
dc.relation.reference (參考文獻) [4] 宋秉信, 從尤拉公式到空間的平面分割, 數學傳播, 第22卷第3期,zh_TW
dc.relation.reference (參考文獻) 頁54-60.zh_TW
dc.relation.reference (參考文獻) [5] Alan Tucker, Applied Combinatorics, 3rd ed., John Wiley &zh_TW
dc.relation.reference (參考文獻) Sons, New York, 1995, 216-218.zh_TW
dc.relation.reference (參考文獻) [6] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E.zh_TW
dc.relation.reference (參考文獻) Spence, Linear Algebra, 3rd ed., Prentice-Hall, 1997, 47-48.zh_TW