學術產出-學位論文

題名 Gap in (l,m)-uniform mixed hypergraph
作者 楊瑞章
貢獻者 張宜武
楊瑞章
關鍵詞 gap
mixed hypergraph
(l,m)-uniform
spectrum
日期 2002
上傳時間 17-九月-2009 13:45:26 (UTC+8)
摘要 (l,m)-uniform混和超級圖的色譜一定是是連續的, 利用一個技巧讓所有l大於二的(l,m)-uniform混和超級圖都存在一組C-edges 和 D-edges, 使得光譜不連續.最後提供一個演算法, 讓所有l和m 都大於二的(l,m)-uniform混和超級圖, 也存在一組 C-edges 和 D-edges, 使得光譜不連續. 這樣我們就已經討論完所有(l,m)-uniform混和超級圖( l , m 都要大於等於 2), 其光譜是否存在著有不連續的可能.
In this thesis, we study all existences of gap in every kind of (l,m)-uniform mixed hypergraph, where n > 1 and m > 1. We have to divide the topic into three parts: (2,m)-uniform mixed hypergraph where m > 1, (l,2)-uniform mixed hypergraph
where l > 2, and (l,m)-uniform mixed hypergraph where l > 2 and m > 2.
參考文獻 1 T. Etzion and A. Hartman, Towards a large set of Steiner auaadruple systems, SIAM J. Discrete Math.4.(1991),182-195.
2 T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin, D. West. The Chromatic Spectrum of Mixed Hypergraphs..Graphs and Combinatorics, 18(2002), 309-318.
3 H. Lefmann, V. Rodl, and R. Thomas, Monochromatic vs. multicolored paths, Graphs Combin.8.(1992), 323-332.
4 D. Lozovanu and V. Voloshin, Integer programming and mixed hypergraphs,(in preparation).
5 L. Milazzo, On upper chromatic number for SQS(10) and SQS(16), Le MathematicheL(Catania, 1995), 179-193.
6 L. Milazzo, The monochromatic block number, Discrete Math. 165-166 (1997), 487-496
7 L. Milazzo and Zs. Tuza, Upper chromatic number of Steiner triple and quadruple systems, Discrete Math. 174(1997),247-259.
8 L. Milazzo and Zs. Tuza, Strict colorings for classes of Steiner triple systems, Discrete Math.182(1998),233-243.
9 Zs. Tuza and V. Voloshin, Uncolorable mixed hypergraphs, Distrete Applied Math.,(to appear)
10 V.Vplosin, Mixed hypergraphs as models for real problems(in preparation).
11 V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Comb. 11(1995), 25-45.
描述 碩士
國立政治大學
應用數學研究所
90751009
91
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0090751009
資料類型 thesis
dc.contributor.advisor 張宜武zh_TW
dc.contributor.author (作者) 楊瑞章zh_TW
dc.creator (作者) 楊瑞章zh_TW
dc.date (日期) 2002en_US
dc.date.accessioned 17-九月-2009 13:45:26 (UTC+8)-
dc.date.available 17-九月-2009 13:45:26 (UTC+8)-
dc.date.issued (上傳時間) 17-九月-2009 13:45:26 (UTC+8)-
dc.identifier (其他 識別碼) G0090751009en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32563-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 90751009zh_TW
dc.description (描述) 91zh_TW
dc.description.abstract (摘要) (l,m)-uniform混和超級圖的色譜一定是是連續的, 利用一個技巧讓所有l大於二的(l,m)-uniform混和超級圖都存在一組C-edges 和 D-edges, 使得光譜不連續.最後提供一個演算法, 讓所有l和m 都大於二的(l,m)-uniform混和超級圖, 也存在一組 C-edges 和 D-edges, 使得光譜不連續. 這樣我們就已經討論完所有(l,m)-uniform混和超級圖( l , m 都要大於等於 2), 其光譜是否存在著有不連續的可能.zh_TW
dc.description.abstract (摘要) In this thesis, we study all existences of gap in every kind of (l,m)-uniform mixed hypergraph, where n > 1 and m > 1. We have to divide the topic into three parts: (2,m)-uniform mixed hypergraph where m > 1, (l,2)-uniform mixed hypergraph
where l > 2, and (l,m)-uniform mixed hypergraph where l > 2 and m > 2.
en_US
dc.description.tableofcontents 1 Introduction..............................................1
2 Coloring of a specific mixed hypergraph...................6
3 The situation of gap in special case.....................10
4 Algorithm of gap in $(l,m)$-uniform mixed hypergraph.....19
5 Appendix 1...............................................31
6 Appendix 2...............................................33
References.................................................35
zh_TW
dc.format.extent 69901 bytes-
dc.format.extent 78509 bytes-
dc.format.extent 66012 bytes-
dc.format.extent 597984 bytes-
dc.format.extent 47374 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0090751009en_US
dc.subject (關鍵詞) gapen_US
dc.subject (關鍵詞) mixed hypergraphen_US
dc.subject (關鍵詞) (l,m)-uniformen_US
dc.subject (關鍵詞) spectrumen_US
dc.title (題名) Gap in (l,m)-uniform mixed hypergraphzh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1 T. Etzion and A. Hartman, Towards a large set of Steiner auaadruple systems, SIAM J. Discrete Math.4.(1991),182-195.zh_TW
dc.relation.reference (參考文獻) 2 T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin, D. West. The Chromatic Spectrum of Mixed Hypergraphs..Graphs and Combinatorics, 18(2002), 309-318.zh_TW
dc.relation.reference (參考文獻) 3 H. Lefmann, V. Rodl, and R. Thomas, Monochromatic vs. multicolored paths, Graphs Combin.8.(1992), 323-332.zh_TW
dc.relation.reference (參考文獻) 4 D. Lozovanu and V. Voloshin, Integer programming and mixed hypergraphs,(in preparation).zh_TW
dc.relation.reference (參考文獻) 5 L. Milazzo, On upper chromatic number for SQS(10) and SQS(16), Le MathematicheL(Catania, 1995), 179-193.zh_TW
dc.relation.reference (參考文獻) 6 L. Milazzo, The monochromatic block number, Discrete Math. 165-166 (1997), 487-496zh_TW
dc.relation.reference (參考文獻) 7 L. Milazzo and Zs. Tuza, Upper chromatic number of Steiner triple and quadruple systems, Discrete Math. 174(1997),247-259.zh_TW
dc.relation.reference (參考文獻) 8 L. Milazzo and Zs. Tuza, Strict colorings for classes of Steiner triple systems, Discrete Math.182(1998),233-243.zh_TW
dc.relation.reference (參考文獻) 9 Zs. Tuza and V. Voloshin, Uncolorable mixed hypergraphs, Distrete Applied Math.,(to appear)zh_TW
dc.relation.reference (參考文獻) 10 V.Vplosin, Mixed hypergraphs as models for real problems(in preparation).zh_TW
dc.relation.reference (參考文獻) 11 V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Comb. 11(1995), 25-45.zh_TW