dc.contributor.advisor | 陸行 | zh_TW |
dc.contributor.author (作者) | 劉心怡 | zh_TW |
dc.contributor.author (作者) | Liu,Hsin-Yi | en_US |
dc.creator (作者) | 劉心怡 | zh_TW |
dc.creator (作者) | Liu,Hsin-Yi | en_US |
dc.date (日期) | 2003 | en_US |
dc.date.accessioned | 17-九月-2009 13:45:59 (UTC+8) | - |
dc.date.available | 17-九月-2009 13:45:59 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-九月-2009 13:45:59 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0091751006 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32568 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 91751006 | zh_TW |
dc.description (描述) | 92 | zh_TW |
dc.description.abstract (摘要) | 在這一篇論文中,我們討論 Ck/Cm/1 的等候系統。 我們利用矩陣多項式的奇異點及向量造 C_k/C_m/1 的機率分配的解空間。而矩陣多項式的非零奇異點和一個由抵達間隔時間與服務時間所形成的方程式有密切的關係。我們證明了在 E_k/E_m/1 的等候系統中,方程式的所有根都是相異的。但是當方程式有重根時,我們必須解一組相當複雜的方程式才能得到構成解空間的向量。此外,我們建立了一個描述飽和機率為 Kronecker products 線性組合的演算方法。 | zh_TW |
dc.description.abstract (摘要) | In this thesis, we analyze the single server queueing systemCk/Cm/1. We construct a general solution space of the vector for stationary probability and describe the solution space in terms of singularities and vectors of the fundamental matrix polynomial Q(w). There is a relation between the singularities of Q(w) and the roots of the characteristic polynomialinvolving the Laplace transforms of the interarrival and servicetimes distributions. In the Ek/Em/1 queueing system, it is proved that the roots of the characteristic polynomial aredistinct if the arrival and service rates are real. Whenmultiple roots occur, one needs to solve a set of equations of matrix polynomials. As a result, we establish a procedure for describing those vectors used in the expression of saturated probability as linear combination of Kronecker products. | en_US |
dc.description.tableofcontents | Chapter 1. Introduction......................................1Chapter 2. Analysis of Ck/Cm/1...............................4Chapter 3. Solution Spaces...................................9Chapter 4. Singularities of Q(w) in the Open Unit Disk.......21Chapter 5. A Method of Constructing Solution Spaces..........28Chapter 6. Conclusion........................................43Bibliography.................................................44Appendix ....................................................46 | zh_TW |
dc.format.extent | 96369 bytes | - |
dc.format.extent | 165674 bytes | - |
dc.format.extent | 174434 bytes | - |
dc.format.extent | 65229 bytes | - |
dc.format.extent | 123485 bytes | - |
dc.format.extent | 166958 bytes | - |
dc.format.extent | 154413 bytes | - |
dc.format.extent | 197061 bytes | - |
dc.format.extent | 60603 bytes | - |
dc.format.extent | 69667 bytes | - |
dc.format.extent | 100543 bytes | - |
dc.format.extent | 111102 bytes | - |
dc.format.extent | 86907 bytes | - |
dc.format.extent | 87438 bytes | - |
dc.format.extent | 120578 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0091751006 | en_US |
dc.subject (關鍵詞) | 不變子空間 | zh_TW |
dc.subject (關鍵詞) | 矩陣多項式 | zh_TW |
dc.subject (關鍵詞) | 飽和機率 | zh_TW |
dc.subject (關鍵詞) | invariant subspace | en_US |
dc.subject (關鍵詞) | matrix polynomial | en_US |
dc.subject (關鍵詞) | Kronecker products | en_US |
dc.title (題名) | Invariant Subspace of Solving Ck/Cm/1 | zh_TW |
dc.title (題名) | 計算 Ck/Cm/1 的機率分配之不變子空間 | zh_TW |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] Bellman R. Introduction to Matrix Analysis, MacGraw- | zh_TW |
dc.relation.reference (參考文獻) | Hill, London, (1960). | zh_TW |
dc.relation.reference (參考文獻) | [2] Bertsimas D., An analytic approach to a general class of | zh_TW |
dc.relation.reference (參考文獻) | G/G/s queueing systems. Operations Research 38,139-155, | zh_TW |
dc.relation.reference (參考文獻) | (1990). | zh_TW |
dc.relation.reference (參考文獻) | [3] Bertsimas D., An exact FCFS waiting time analysis for a | zh_TW |
dc.relation.reference (參考文獻) | general class of G/G/s queueing systems. Queueing systems | zh_TW |
dc.relation.reference (參考文獻) | 3, 305-320, (1988). | zh_TW |
dc.relation.reference (參考文獻) | [4] Le Boudec, J. Y., Steady-state probabilities of the | zh_TW |
dc.relation.reference (參考文獻) | PH/PH/1 queue. Queueing systems 3, 73-88, (1988). | zh_TW |
dc.relation.reference (參考文獻) | [5] Evans, R. V. Geometric distribution in some two- | zh_TW |
dc.relation.reference (參考文獻) | dimensional queueing systems. Operations Research 15, 830- | zh_TW |
dc.relation.reference (參考文獻) | 846, (1967). | zh_TW |
dc.relation.reference (參考文獻) | [6] Gail, H. R., Hantler, S. L. and Taylor, B., A Spectral | zh_TW |
dc.relation.reference (參考文獻) | analysis of M/G/1 and G/M/1 Type Markov chaons. Adv. | zh_TW |
dc.relation.reference (參考文獻) | Appl. Prob. 28, 114-165, (1996). | zh_TW |
dc.relation.reference (參考文獻) | [7] Gohberg, I. C., Lancaster, P. and Rodman, L. Matrix | zh_TW |
dc.relation.reference (參考文獻) | polynomials. Academic Press, New York (1982). | zh_TW |
dc.relation.reference (參考文獻) | [8] Gohberg, I. C., Lancaster, P. and Rodman, L. Matrix Topics | zh_TW |
dc.relation.reference (參考文獻) | in Matrix (1991). | zh_TW |
dc.relation.reference (參考文獻) | [9] Neuts, M. F. Matrix-Geomatric Solutions in Stochastic | zh_TW |
dc.relation.reference (參考文獻) | Models. The John Hopkins University Press, (1981). | zh_TW |
dc.relation.reference (參考文獻) | [10] Wang, H. S. A new Approach to Analyze Stationary | zh_TW |
dc.relation.reference (參考文獻) | Probabilities Distributions of a PH/PH/1/N Queue, Master | zh_TW |
dc.relation.reference (參考文獻) | thesis National Chengchi University, (2002). | zh_TW |
dc.relation.reference (參考文獻) | [11] Wallace, V. The solution of quasi birth and death | zh_TW |
dc.relation.reference (參考文獻) | processes arising from multiple access computer systems, | zh_TW |
dc.relation.reference (參考文獻) | Ph. D. diss. Systems Engineering Laboratory, University | zh_TW |
dc.relation.reference (參考文獻) | of Michigan, Tech. Report N 07742-6-T, (1969). | zh_TW |