學術產出-學位論文

題名 4-Caterpillars的優美標法
Graceful Labelings of 4-Caterpillars
作者 吳文智
Wu, Wen Chih
貢獻者 李陽明
吳文智
Wu, Wen Chih
關鍵詞 
優美圖
Trees
graceful labelling
4-Caterpillars
4-stars
日期 2005
上傳時間 17-九月-2009 13:46:05 (UTC+8)
摘要 樹是一個沒有迴路的連接圖。而4-caterpillar是一種樹,它擁有單一路徑連接到數個長度為3的路徑的端點。一個有n個邊的無向圖G的優美標法是一個從G的點到{0,1,2,...,n}的一對一函數,使得每一個邊的標號都不一樣,其中,邊的標號是兩個相鄰的點的編號差的絕對值。在這篇論文當中,我們最主要的目的是使用一個演算法來完成4-caterpillars的優美標法。
A tree is connected acyclic graph. A 4-caterpillar is a tree with a single path only incident to the end-vertices of paths of length 3. A graceful labelling of an undirected graph G with n edges is a one-to-one function from the set of vertices of G to the set {0,1,2,...,n} such that the induced edge labels are all distinct, where the edge label is the difference between two endvertex labels. In this thesis, our main purpose is to use an algorithm to yield graceful labellings of 4-caterpillars.
參考文獻 [1] R.E. Aldred and B.D. McKay, Graceful and harmonious
labellings of trees, Bull. Inst. Combin. Appl., 23 (1998) 69-72.
[2] R.E. Aldred, J. Siran and M. Siran, A Note on the number of graceful labellings of paths, Discrete Math., 261 (2003) 27-30.
[3] J.C. Bermond, Graceful graphs, radio antennae and French windmills, Graph Theory and Combinatorics, Pitman, London (1979) 18-37.
[4] J.C. Bermond and D. Sotteau, Graph decompositions and G-design, Proc. 5th British Combinatorics Conference, 1975, Congress. Number., XV (1976) 53-72.
[5] V. Bhat-Nayak and U. Deshmukh, New families of graceful banana trees, Proc. Indian Acad. Sci Math. Sci., 106 (1996) 201-216.
[6] G. S. Bloom, A chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful, Ann. N. Y. Acad. Sci., 326 (1979) 32-51.
[7] C.P. Bonnington and J. Siran, Bipartite labelling of trees with maximum degree three, Journal of Graph Theory, 31 (1999) 37-56.
[8] L. Brankovic, A. Rose and J. Siran, Labelling of trees with maximum degree three and improved bound, preprint, (1999).
[9] H.J. Broersma and C. Hoede, Another equivalent of the graceful tree conjecture, Ars Combinatoria, 51 (1999) 183-192.
[10] M. Burzio and G. Ferrarese, The subdivision graph of a graceful tree is a graceful tree, Discrete Mathematices, 181 (1998) 275-281.
[11] I. Cahit, R. Cahit, On the graceful numbering of spanning trees, Information Processing Letters, vol. 3, no. 4, pp. (1998) 115-118.
[12] Y.-M. Chen, Y.-Z. Shih, 2-Caterpillars are graceful. Preprint, (2006).
[13] W.C. Chen, H.I. Lu and Y.N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bulletin of Mathematics, 21 (1997) 337-348.
[14] P. Hrnciar, A. Havier, All trees of diameter five are graceful. Discrete Mathematices, 31 (2001) 279-292.
[15] K.M. Koh, D.G. Rogers and T. Tan, A graceful arboretum: A survey of graceful trees, in Proceedings of Franco-Southeast Asian Conference, Singapore, May 1979, 2 278-287.
[16] D. Morgan, Graceful labelled trees from Skolem sequences, Proc. of the Thirty-first Southeastern Internat, Conf, on Combin., Graph Theory, Computing (Boca Raton, FL, 2000) and Congressus Numerantium, (2000) 41-48.
[17] D. Morgan, All lobsters with perfect matchings are graceful, Electronic Notes in Discrete Mathematices, 11 (2002), 503-508.
[18] A.M. Pastel and H. Raynaud, Les oliviers sont gracieux, Colloq. Grenoble, Publications Universite de Grenoble, (1978).
[19] A. Rose, On certain valuations of the vertices of graph, Theory of Graphs, International Symposium, Rome, July 1996, Gordon and Breach, N.Y. and Dunod Paris (1967) 349-355.
[20] J.-G. Wang, D.J. Jin, X.-G. Lu and D. Zhang, The gracefulness of a class of lobster Trees, Mathematical Computer Modelling, 20 (1994) 105-110.
[21] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc. (1996).
描述 碩士
國立政治大學
應用數學研究所
91751009
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0091751009
資料類型 thesis
dc.contributor.advisor 李陽明zh_TW
dc.contributor.author (作者) 吳文智zh_TW
dc.contributor.author (作者) Wu, Wen Chihen_US
dc.creator (作者) 吳文智zh_TW
dc.creator (作者) Wu, Wen Chihen_US
dc.date (日期) 2005en_US
dc.date.accessioned 17-九月-2009 13:46:05 (UTC+8)-
dc.date.available 17-九月-2009 13:46:05 (UTC+8)-
dc.date.issued (上傳時間) 17-九月-2009 13:46:05 (UTC+8)-
dc.identifier (其他 識別碼) G0091751009en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32569-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 91751009zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 樹是一個沒有迴路的連接圖。而4-caterpillar是一種樹,它擁有單一路徑連接到數個長度為3的路徑的端點。一個有n個邊的無向圖G的優美標法是一個從G的點到{0,1,2,...,n}的一對一函數,使得每一個邊的標號都不一樣,其中,邊的標號是兩個相鄰的點的編號差的絕對值。在這篇論文當中,我們最主要的目的是使用一個演算法來完成4-caterpillars的優美標法。zh_TW
dc.description.abstract (摘要) A tree is connected acyclic graph. A 4-caterpillar is a tree with a single path only incident to the end-vertices of paths of length 3. A graceful labelling of an undirected graph G with n edges is a one-to-one function from the set of vertices of G to the set {0,1,2,...,n} such that the induced edge labels are all distinct, where the edge label is the difference between two endvertex labels. In this thesis, our main purpose is to use an algorithm to yield graceful labellings of 4-caterpillars.en_US
dc.description.tableofcontents 書名頁
謝辭
英文摘要
中文摘要
目次
第一章 Introduction
第二章 Main result
第三章 Further studies in the future
參考文獻
zh_TW
dc.format.extent 139337 bytes-
dc.format.extent 88506 bytes-
dc.format.extent 71119 bytes-
dc.format.extent 122623 bytes-
dc.format.extent 147234 bytes-
dc.format.extent 151700 bytes-
dc.format.extent 480260 bytes-
dc.format.extent 66830 bytes-
dc.format.extent 139904 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0091751009en_US
dc.subject (關鍵詞) zh_TW
dc.subject (關鍵詞) 優美圖zh_TW
dc.subject (關鍵詞) Treesen_US
dc.subject (關鍵詞) graceful labellingen_US
dc.subject (關鍵詞) 4-Caterpillarsen_US
dc.subject (關鍵詞) 4-starsen_US
dc.title (題名) 4-Caterpillars的優美標法zh_TW
dc.title (題名) Graceful Labelings of 4-Caterpillarsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] R.E. Aldred and B.D. McKay, Graceful and harmoniouszh_TW
dc.relation.reference (參考文獻) labellings of trees, Bull. Inst. Combin. Appl., 23 (1998) 69-72.zh_TW
dc.relation.reference (參考文獻) [2] R.E. Aldred, J. Siran and M. Siran, A Note on the number of graceful labellings of paths, Discrete Math., 261 (2003) 27-30.zh_TW
dc.relation.reference (參考文獻) [3] J.C. Bermond, Graceful graphs, radio antennae and French windmills, Graph Theory and Combinatorics, Pitman, London (1979) 18-37.zh_TW
dc.relation.reference (參考文獻) [4] J.C. Bermond and D. Sotteau, Graph decompositions and G-design, Proc. 5th British Combinatorics Conference, 1975, Congress. Number., XV (1976) 53-72.zh_TW
dc.relation.reference (參考文獻) [5] V. Bhat-Nayak and U. Deshmukh, New families of graceful banana trees, Proc. Indian Acad. Sci Math. Sci., 106 (1996) 201-216.zh_TW
dc.relation.reference (參考文獻) [6] G. S. Bloom, A chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful, Ann. N. Y. Acad. Sci., 326 (1979) 32-51.zh_TW
dc.relation.reference (參考文獻) [7] C.P. Bonnington and J. Siran, Bipartite labelling of trees with maximum degree three, Journal of Graph Theory, 31 (1999) 37-56.zh_TW
dc.relation.reference (參考文獻) [8] L. Brankovic, A. Rose and J. Siran, Labelling of trees with maximum degree three and improved bound, preprint, (1999).zh_TW
dc.relation.reference (參考文獻) [9] H.J. Broersma and C. Hoede, Another equivalent of the graceful tree conjecture, Ars Combinatoria, 51 (1999) 183-192.zh_TW
dc.relation.reference (參考文獻) [10] M. Burzio and G. Ferrarese, The subdivision graph of a graceful tree is a graceful tree, Discrete Mathematices, 181 (1998) 275-281.zh_TW
dc.relation.reference (參考文獻) [11] I. Cahit, R. Cahit, On the graceful numbering of spanning trees, Information Processing Letters, vol. 3, no. 4, pp. (1998) 115-118.zh_TW
dc.relation.reference (參考文獻) [12] Y.-M. Chen, Y.-Z. Shih, 2-Caterpillars are graceful. Preprint, (2006).zh_TW
dc.relation.reference (參考文獻) [13] W.C. Chen, H.I. Lu and Y.N. Yeh, Operations of interlaced trees and graceful trees, Southeast Asian Bulletin of Mathematics, 21 (1997) 337-348.zh_TW
dc.relation.reference (參考文獻) [14] P. Hrnciar, A. Havier, All trees of diameter five are graceful. Discrete Mathematices, 31 (2001) 279-292.zh_TW
dc.relation.reference (參考文獻) [15] K.M. Koh, D.G. Rogers and T. Tan, A graceful arboretum: A survey of graceful trees, in Proceedings of Franco-Southeast Asian Conference, Singapore, May 1979, 2 278-287.zh_TW
dc.relation.reference (參考文獻) [16] D. Morgan, Graceful labelled trees from Skolem sequences, Proc. of the Thirty-first Southeastern Internat, Conf, on Combin., Graph Theory, Computing (Boca Raton, FL, 2000) and Congressus Numerantium, (2000) 41-48.zh_TW
dc.relation.reference (參考文獻) [17] D. Morgan, All lobsters with perfect matchings are graceful, Electronic Notes in Discrete Mathematices, 11 (2002), 503-508.zh_TW
dc.relation.reference (參考文獻) [18] A.M. Pastel and H. Raynaud, Les oliviers sont gracieux, Colloq. Grenoble, Publications Universite de Grenoble, (1978).zh_TW
dc.relation.reference (參考文獻) [19] A. Rose, On certain valuations of the vertices of graph, Theory of Graphs, International Symposium, Rome, July 1996, Gordon and Breach, N.Y. and Dunod Paris (1967) 349-355.zh_TW
dc.relation.reference (參考文獻) [20] J.-G. Wang, D.J. Jin, X.-G. Lu and D. Zhang, The gracefulness of a class of lobster Trees, Mathematical Computer Modelling, 20 (1994) 105-110.zh_TW
dc.relation.reference (參考文獻) [21] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc. (1996).zh_TW