學術產出-學位論文

題名 銷售力之數學模型
A Mathematical Model Model on Sale Intensity
作者 林雨農
貢獻者 李明融
林雨農
關鍵詞 傳導方程
銷售力
擴散係數
heat equation
sale intensity
diffusion coefficient
日期 2006
上傳時間 17-九月-2009 13:47:00 (UTC+8)
摘要 銷售力一直是一個企業關切的主要議題,借助Vidale-Wolfe數學模型,我們提出一個銷售力數學模型。藉由熱傳導方程,刻畫由資訊交流產生的自身銷售力。在資訊交流及商品促銷下產生的銷售力,可經由非齊次熱傳導方程描繪。然而,我們無法以單一非齊次熱傳導方程描繪所有情況,因此,模型建立與問題解決須於不同情況下逐一地討論。
透過充分的數據,銷售力是可以被預估的;另外,我們也可以利用此模型,對於行銷策略加以評估。
異於以往大部分的研究,此模型加入了空間上的概念,對於傳導現象而言,這是相當重要的。
Sale intensity is always one of the major subjects that business is concerned
about. We propose a mathematical model based on the concept given by
Vidale-Wolfe to characterize the behavior of sale intensity.
Using the sense of diffusion in heat equation, we could characterize the
behavior of sale intensity starting from the spontaneous sale intensity caused
by the circulating of information. The behavior of changing on sale intensity under the effect of diffusing by
the circulating of information and the promoting activities can be generally
modeled as nonhomogeneous heat equations. However, because of the great difference between cases, the problem
formulating and model solving cannot be generally modeled as one certain
nonhomogeneous heat equation and are restricted to be discussed case by case.%
The further sale intensity is predictable possibly with sufficient data, but
without sufficient data, we can also use the model to appraise the
spontaneous sale intensity and the benefit of each advertising strategy in
practical.
Different from most previous relevant studies, the model supports the studies of sale
intensity diffusing over geographic regions, which is especially of significance
in spontaneous sale intensity.
參考文獻 [1] Vidale, M.L., and Wolfe, H.B., An Operation Research Study for Sale Responce
to Advertising , Operations Research 5 (1957), 370-381.
[2] Nerlove, M., and J.K. Arrow, Optimal Advertising Policy Under Dynamic Conditions
, Econamica, 29 (1962), 129-142.
[3] Kaliappan, P., nonlinear heat equations: An exact solution for travelling waves
of ut = Duxx + u ¡ uk: , Physica D. 11 (1984), 368-374.
[4] Marinelli Carlo, and Savin Sergei, Optimal distributed dynamic advertising,
eprint arXiv:math, 0406435 (2004).
[5] Agmon,S., Lectures on Elliptic Boundary Value Problems , D. Van Nostrand
Co., Princeton,1965. 29 (1965).
[6] Nerlove, M., and J.K. Arrow, Mathmetical Methods in Optimization of Differential
Systems, Kluwer,Dorrecht, (1995).
[7] Bronnenberg, B.J., and V. Mahajan, Unobserved Retailer Behavior in Multi-
Market data:Joint Spatial Dependence in Market Shares and Promotion Variables
, Marketing Science, 20 (2001), 284-299.
[8] Dube, J.P., and P. Manchanda, Difference in Dynamic Brand Competition
across Markets: An Empirical Analysis, Forthcoming Marketing Science, (2004).
[9] Feichtinger, G., Hartl, R.F., and S.P. Sethi, Dynamic Optimal Control Model in
Advertising: Resent Developments, Management Science, 40 (1994),195-226.
描述 碩士
國立政治大學
應用數學研究所
93751008
95
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093751008
資料類型 thesis
dc.contributor.advisor 李明融zh_TW
dc.contributor.author (作者) 林雨農zh_TW
dc.creator (作者) 林雨農zh_TW
dc.date (日期) 2006en_US
dc.date.accessioned 17-九月-2009 13:47:00 (UTC+8)-
dc.date.available 17-九月-2009 13:47:00 (UTC+8)-
dc.date.issued (上傳時間) 17-九月-2009 13:47:00 (UTC+8)-
dc.identifier (其他 識別碼) G0093751008en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32577-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 93751008zh_TW
dc.description (描述) 95zh_TW
dc.description.abstract (摘要) 銷售力一直是一個企業關切的主要議題,借助Vidale-Wolfe數學模型,我們提出一個銷售力數學模型。藉由熱傳導方程,刻畫由資訊交流產生的自身銷售力。在資訊交流及商品促銷下產生的銷售力,可經由非齊次熱傳導方程描繪。然而,我們無法以單一非齊次熱傳導方程描繪所有情況,因此,模型建立與問題解決須於不同情況下逐一地討論。
透過充分的數據,銷售力是可以被預估的;另外,我們也可以利用此模型,對於行銷策略加以評估。
異於以往大部分的研究,此模型加入了空間上的概念,對於傳導現象而言,這是相當重要的。
zh_TW
dc.description.abstract (摘要) Sale intensity is always one of the major subjects that business is concerned
about. We propose a mathematical model based on the concept given by
Vidale-Wolfe to characterize the behavior of sale intensity.
Using the sense of diffusion in heat equation, we could characterize the
behavior of sale intensity starting from the spontaneous sale intensity caused
by the circulating of information. The behavior of changing on sale intensity under the effect of diffusing by
the circulating of information and the promoting activities can be generally
modeled as nonhomogeneous heat equations. However, because of the great difference between cases, the problem
formulating and model solving cannot be generally modeled as one certain
nonhomogeneous heat equation and are restricted to be discussed case by case.%
The further sale intensity is predictable possibly with sufficient data, but
without sufficient data, we can also use the model to appraise the
spontaneous sale intensity and the benefit of each advertising strategy in
practical.
Different from most previous relevant studies, the model supports the studies of sale
intensity diffusing over geographic regions, which is especially of significance
in spontaneous sale intensity.
en_US
dc.description.tableofcontents 中文摘要 i
Abstract ii
1.Introduction 1
2.Preliminaries and notation 4
3.Model and problem formulation 5
4.Solution for the relatively short advertising campaign 10
5.Application in practical 14
6.Discussion 17
7.Conclusion 23
References 25
zh_TW
dc.format.extent 58171 bytes-
dc.format.extent 17571 bytes-
dc.format.extent 76220 bytes-
dc.format.extent 19037 bytes-
dc.format.extent 37005 bytes-
dc.format.extent 33359 bytes-
dc.format.extent 45189 bytes-
dc.format.extent 49018 bytes-
dc.format.extent 41329 bytes-
dc.format.extent 66795 bytes-
dc.format.extent 20834 bytes-
dc.format.extent 31822 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093751008en_US
dc.subject (關鍵詞) 傳導方程zh_TW
dc.subject (關鍵詞) 銷售力zh_TW
dc.subject (關鍵詞) 擴散係數zh_TW
dc.subject (關鍵詞) heat equationen_US
dc.subject (關鍵詞) sale intensityen_US
dc.subject (關鍵詞) diffusion coefficienten_US
dc.title (題名) 銷售力之數學模型zh_TW
dc.title (題名) A Mathematical Model Model on Sale Intensityen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Vidale, M.L., and Wolfe, H.B., An Operation Research Study for Sale Responcezh_TW
dc.relation.reference (參考文獻) to Advertising , Operations Research 5 (1957), 370-381.zh_TW
dc.relation.reference (參考文獻) [2] Nerlove, M., and J.K. Arrow, Optimal Advertising Policy Under Dynamic Conditionszh_TW
dc.relation.reference (參考文獻) , Econamica, 29 (1962), 129-142.zh_TW
dc.relation.reference (參考文獻) [3] Kaliappan, P., nonlinear heat equations: An exact solution for travelling waveszh_TW
dc.relation.reference (參考文獻) of ut = Duxx + u ¡ uk: , Physica D. 11 (1984), 368-374.zh_TW
dc.relation.reference (參考文獻) [4] Marinelli Carlo, and Savin Sergei, Optimal distributed dynamic advertising,zh_TW
dc.relation.reference (參考文獻) eprint arXiv:math, 0406435 (2004).zh_TW
dc.relation.reference (參考文獻) [5] Agmon,S., Lectures on Elliptic Boundary Value Problems , D. Van Nostrandzh_TW
dc.relation.reference (參考文獻) Co., Princeton,1965. 29 (1965).zh_TW
dc.relation.reference (參考文獻) [6] Nerlove, M., and J.K. Arrow, Mathmetical Methods in Optimization of Differentialzh_TW
dc.relation.reference (參考文獻) Systems, Kluwer,Dorrecht, (1995).zh_TW
dc.relation.reference (參考文獻) [7] Bronnenberg, B.J., and V. Mahajan, Unobserved Retailer Behavior in Multi-zh_TW
dc.relation.reference (參考文獻) Market data:Joint Spatial Dependence in Market Shares and Promotion Variableszh_TW
dc.relation.reference (參考文獻) , Marketing Science, 20 (2001), 284-299.zh_TW
dc.relation.reference (參考文獻) [8] Dube, J.P., and P. Manchanda, Difference in Dynamic Brand Competitionzh_TW
dc.relation.reference (參考文獻) across Markets: An Empirical Analysis, Forthcoming Marketing Science, (2004).zh_TW
dc.relation.reference (參考文獻) [9] Feichtinger, G., Hartl, R.F., and S.P. Sethi, Dynamic Optimal Control Model inzh_TW
dc.relation.reference (參考文獻) Advertising: Resent Developments, Management Science, 40 (1994),195-226.zh_TW