dc.contributor.advisor | 陳天進 | zh_TW |
dc.contributor.advisor | Chen, Ten-Ging | en_US |
dc.contributor.author (Authors) | 陳耿彥 | zh_TW |
dc.contributor.author (Authors) | Chen, Keng-Yan | en_US |
dc.creator (作者) | 陳耿彥 | zh_TW |
dc.creator (作者) | Chen, Keng-Yan | en_US |
dc.date (日期) | 2007 | en_US |
dc.date.accessioned | 17-Sep-2009 13:47:35 (UTC+8) | - |
dc.date.available | 17-Sep-2009 13:47:35 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 13:47:35 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0093751501 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32582 | - |
dc.description (描述) | 博士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 93751501 | zh_TW |
dc.description (描述) | 96 | zh_TW |
dc.description.abstract (摘要) | 在這篇論文裡,我們利用值分佈的理論來探討半純函數的共值與唯一性的問題,本文包含了以下的結果:將Jank與Terglane有關三個A類中的半純函數唯一性的結果推廣到任意q個半純函數的情形;證明了C. C. Yang的一個猜測;建構了一類半純函數恰有兩個虧值,而且算出它們的虧格;將Nevanlinna 五個值的定理推廣至兩個半純函數部分共值的情形;探討純函數與其導數的共值問題;最後,證明了兩個半純函數共四個值且重數皆不同的定理。 | zh_TW |
dc.description.abstract (摘要) | In this thesis, we study the sharing value problems and theuniqueness problems of meromorphic functions in the theory of value distribution. In fact, this thesis contains the following results: We generalize a unicity condition of three meromorphic functions given by Jank and Terglane in class A to the case of arbitrary q meromorphic functoins. An elementary proof of a conjecture of C. C. Yang is provided. We construct a class of meromorphic functions with exact two deficient values and their deficiencies are explicitly computed. We generalize the Nevanlinna`s five-value theorem to the cases that two meromorphic functions partially share either five or more values, or five ormore small functions. In each case, we formulate a way to measure how far these two meromorphic functions are from sharing either values or small functions, and use this measurement to prove a uniqueness theorem. Also, we prove some uniqueness theorems on entire functions that share a pair of values (a,-a) with their derivatives, which are reformulations of some important results about uniqueness of entire functions that share values with their derivatives. Finally, we prove that if two distinct non-constant meromorphic functions $f$ and $g$ share four distinct values a_1, a_2, a_3, a_4 DM such that each a_i-point is either a (p,q)-fold or (q,p)-fold point of f and g, then (p,q) is either (1,2) or (1,3) and f, g are in some particular forms. | en_US |
dc.description.tableofcontents | 謝辭......................................................iAbstract................................................iii中文摘要..................................................iv1 Introduction............................................12 Basic Theory of Value Distribution......................4 2.1 Poisson-Jensen`s Formula............................4 2.2 The Nevanlinna`s First Fundamental Theorem..........6 2.3 The Nevanlinna`s Second Fundamental Theorem.........8 2.4 The Estimation of S(r,f)............................9 2.5 Deficient Value of Meromorphic Functions...........12 2.6 Some Well-Known Results on Four Value Problem......133 Unicity of Meromorphic Functions of Class A............15 3.1 Introduction.......................................15 3.2 Some Facts About Meromorphic Functions of Class A..17 3.3 Main Results and Proofs............................18 3.4 A Conjecture.......................................204 On a Conjecture of C. C. Yang..........................22 4.1 Introduction.......................................22 4.2 Some Lemmas........................................24 4.3 Main Result and Proof..............................255 The Deficient Values of a Class of Meromorphic Functions .......................................................28 5.1 Introduction.......................................28 5.2 The Deficient Values of Rational Functions.........30 5.3 The Proof of Theorem A.............................31 5.4 The Proof of Theorem B.............................356 Some Generalization of Nevanlinna`s Five-Values Theorem .......................................................41 6.1 Introduction.......................................41 6.2 Meromorphic Functions Partially Share Values.......43 6.3 Meromorphic Functions Partially Share Small Functions ...................................................457 On the Uniqueness of Entire Functions and Their Derivatives............................................49 7.1 Introduction.......................................49 7.2 Lemmas and Known Results...........................50 7.3 Main Results and Proofs............................528 Some Results on Meromorphic Functions Sharing Four Values DM.....................................................65 8.1 Introduction.......................................65 8.2 Key Examples and Facts.............................66 8.3 Main Result and Proof..............................68References...............................................69 | zh_TW |
dc.format.extent | 68201 bytes | - |
dc.format.extent | 201185 bytes | - |
dc.format.extent | 251329 bytes | - |
dc.format.extent | 72448 bytes | - |
dc.format.extent | 269042 bytes | - |
dc.format.extent | 76711 bytes | - |
dc.format.extent | 139360 bytes | - |
dc.format.extent | 134508 bytes | - |
dc.format.extent | 129651 bytes | - |
dc.format.extent | 153096 bytes | - |
dc.format.extent | 126095 bytes | - |
dc.format.extent | 156565 bytes | - |
dc.format.extent | 117527 bytes | - |
dc.format.extent | 57946 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0093751501 | en_US |
dc.subject (關鍵詞) | 值分佈理論 | zh_TW |
dc.subject (關鍵詞) | 半純函數 | zh_TW |
dc.subject (關鍵詞) | value distribution theory | en_US |
dc.subject (關鍵詞) | meromorphic function | en_US |
dc.title (題名) | 半純函數的唯一性 | zh_TW |
dc.title (題名) | Some Results on the Uniqueness of Meromorphic Functions | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] W. W. Adams and E. G. Straus, Non-Archimedian analytic | zh_TW |
dc.relation.reference (參考文獻) | functions taking the same values at the same points, | zh_TW |
dc.relation.reference (參考文獻) | Ill. J. Math., 15 (1971), 418-424. | zh_TW |
dc.relation.reference (參考文獻) | [2] G. Brosch, Eindeutigkeitssatze fur meromorphe | zh_TW |
dc.relation.reference (參考文獻) | funktionen, Thesis, Technical University of Aachen, | zh_TW |
dc.relation.reference (參考文獻) | 1989. | zh_TW |
dc.relation.reference (參考文獻) | [3] J. Clunie, On integral and meromorphic functions, | zh_TW |
dc.relation.reference (參考文獻) | J. London Math. Soc., 36 (1962), 17-27. | zh_TW |
dc.relation.reference (參考文獻) | [4] C. T. Chuang and C. C. Yang, Fixed points and | zh_TW |
dc.relation.reference (參考文獻) | factorization theory of meromorphic functions, Peking | zh_TW |
dc.relation.reference (參考文獻) | Univ. Press, 1988. | zh_TW |
dc.relation.reference (參考文獻) | [5] W. Doeringer, Exceptional value of differential | zh_TW |
dc.relation.reference (參考文獻) | polynomial, Pacific J. Math., 98 (1982), 55-62. | zh_TW |
dc.relation.reference (參考文獻) | [6] G. Frank and W. Ohlenroth, Meromorphe funktionen, die | zh_TW |
dc.relation.reference (參考文獻) | mit einer ihrer ableitungen werte teilen, Complex | zh_TW |
dc.relation.reference (參考文獻) | Variables, 6 (1986), 23-37. | zh_TW |
dc.relation.reference (參考文獻) | [7] F. Gross, Factorizatioin of meromorphic functions, U. | zh_TW |
dc.relation.reference (參考文獻) | S. Government Printing Office, Washington, D. C.,1972. | zh_TW |
dc.relation.reference (參考文獻) | [8] G. G. Gundersen, Meromorphic functions that share three | zh_TW |
dc.relation.reference (參考文獻) | or four values, J. London Math. Soc., 20 (1979), | zh_TW |
dc.relation.reference (參考文獻) | 457-466. | zh_TW |
dc.relation.reference (參考文獻) | [9] G. G. Gundersen, Meromorphic functions that share finite | zh_TW |
dc.relation.reference (參考文獻) | values with their derivative, J. Math. Anal. Appl., | zh_TW |
dc.relation.reference (參考文獻) | 75 (1980), 441-446. | zh_TW |
dc.relation.reference (參考文獻) | [10] G. G. Gundersen, Meromorphic functions that share four | zh_TW |
dc.relation.reference (參考文獻) | values, Transactions of the American Mathematical | zh_TW |
dc.relation.reference (參考文獻) | Society, 277(2) (1983), 545-567. | zh_TW |
dc.relation.reference (參考文獻) | [11] G. G. Gundersen and L. Z. Yang, Entire functions that | zh_TW |
dc.relation.reference (參考文獻) | share one value with one or two of their derivatives, | zh_TW |
dc.relation.reference (參考文獻) | J. Math. Anal. Appl., 223 (1998), 88-95. | zh_TW |
dc.relation.reference (參考文獻) | [12] W. K. Hayman, Meromorphic functions, Clarendon Press, | zh_TW |
dc.relation.reference (參考文獻) | Oxford, 1964. | zh_TW |
dc.relation.reference (參考文獻) | [13] D. Hans and S. Gerald, Zur charakterisierung von | zh_TW |
dc.relation.reference (參考文獻) | polynomen durch ihre Null-und Einsstellen, Arch. | zh_TW |
dc.relation.reference (參考文獻) | Math., 48 (1987), 337-342. | zh_TW |
dc.relation.reference (參考文獻) | [14] G. Jank and N. Terglane, Meromorphic functions sharing | zh_TW |
dc.relation.reference (參考文獻) | three values, Math. Pannonica, 2 (1990), 37-46. | zh_TW |
dc.relation.reference (參考文獻) | [15] P. Li, Entire functions that share one value with their | zh_TW |
dc.relation.reference (參考文獻) | linear differential polynomials, Kodai Math. J., 22 | zh_TW |
dc.relation.reference (參考文獻) | (1999), 446-457. | zh_TW |
dc.relation.reference (參考文獻) | [16] P. Li and C. C. Yang, Uniqueness theorems on entire | zh_TW |
dc.relation.reference (參考文獻) | functions and their derivatives, J. Math. Anal. Appl., | zh_TW |
dc.relation.reference (參考文獻) | 253 (2001), 50-57. | zh_TW |
dc.relation.reference (參考文獻) | [17] Y. Li and J. Qiao, The uniqueness of meromorphic | zh_TW |
dc.relation.reference (參考文獻) | functions concerning small functions, Sci. China Ser. | zh_TW |
dc.relation.reference (參考文獻) | A, 43(6) (2000), 581-590. | zh_TW |
dc.relation.reference (參考文獻) | [18] E. Mues, Meromorphic functions sharing four values, | zh_TW |
dc.relation.reference (參考文獻) | Complex Variables, 12 (1989), 169-179. | zh_TW |
dc.relation.reference (參考文獻) | [19] E. Mues, G. Jank and L. Volkmann, Meromorphe | zh_TW |
dc.relation.reference (參考文獻) | funktionen, die mit ihrer ersten und zweiten ableitung | zh_TW |
dc.relation.reference (參考文獻) | einen endichen wert teilen, Complex Variables Theory | zh_TW |
dc.relation.reference (參考文獻) | Appl. 6(1986), 51-71. | zh_TW |
dc.relation.reference (參考文獻) | [20] E. Mues and N. Steinmetz, Meromorphe funktionen, die | zh_TW |
dc.relation.reference (參考文獻) | mit ihrer abelitung werte teilen, Manuscripta Math. | zh_TW |
dc.relation.reference (參考文獻) | 29 (1979), 195-206. | zh_TW |
dc.relation.reference (參考文獻) | [21] H. Milloux, Les fonctions meromorphes et leurs | zh_TW |
dc.relation.reference (參考文獻) | derivees, Paris, 1940. | zh_TW |
dc.relation.reference (參考文獻) | [22] S. S. Miller, Complex analysis: Proceedings of the SUNY | zh_TW |
dc.relation.reference (參考文獻) | Brockport Conference, Dekker, New York and Basel, | zh_TW |
dc.relation.reference (參考文獻) | 1978, p.169. | zh_TW |
dc.relation.reference (參考文獻) | [23] T. T. Moh, On a certain group structure for | zh_TW |
dc.relation.reference (參考文獻) | polynomials, Proc. Amer. Math. Soc., 82 (1981), | zh_TW |
dc.relation.reference (參考文獻) | 183-187. | zh_TW |
dc.relation.reference (參考文獻) | [24] K. Ninno and M. Ozawa, Deficiencies of an entire | zh_TW |
dc.relation.reference (參考文獻) | algebroid function, Kodai Math. Sem. Rep., 22 (1970), | zh_TW |
dc.relation.reference (參考文獻) | 98-113. | zh_TW |
dc.relation.reference (參考文獻) | [25] R. Nevanlinna, Le theoreme de Picard-Borel et la | zh_TW |
dc.relation.reference (參考文獻) | theorie des fonctions meromorphes, Gauthiers-Villars, | zh_TW |
dc.relation.reference (參考文獻) | Paris, 1929. | zh_TW |
dc.relation.reference (參考文獻) | [26] R. Nevanlinna, Einige eindueutigkeitssatze in der | zh_TW |
dc.relation.reference (參考文獻) | theorie der mermorphen funktionen, Acta Math., 48 | zh_TW |
dc.relation.reference (參考文獻) | (1926), 367-391. | zh_TW |
dc.relation.reference (參考文獻) | [27] E. Picard. Memoire sur les fonctions entieres, Ann. | zh_TW |
dc.relation.reference (參考文獻) | Ecole. Norm., 9(1880), 145-166. | zh_TW |
dc.relation.reference (參考文獻) | [28] G. Polya. On an integral function of an integral | zh_TW |
dc.relation.reference (參考文獻) | function, J. London Math. Soc., 1(1926), p.12. | zh_TW |
dc.relation.reference (參考文獻) | [29] L. Ruble and C. C. Yang, Values shared by entire | zh_TW |
dc.relation.reference (參考文獻) | functions and their derivatives, Complex Analysis, | zh_TW |
dc.relation.reference (參考文獻) | Kentucky, 1976 (Berlin),Springer-Verlag, 1977, 101-103. | zh_TW |
dc.relation.reference (參考文獻) | [30] M. Reinders, Eindeutigkeitssatze fur meromprphe | zh_TW |
dc.relation.reference (參考文獻) | Funktionen, die vier Werte teilen, PhD thesis, | zh_TW |
dc.relation.reference (參考文獻) | Universitat Hannover, 1990. | zh_TW |
dc.relation.reference (參考文獻) | [31] M. Reinders, Eindeutigkeitssatze fur meromorphe | zh_TW |
dc.relation.reference (參考文獻) | funktionen, die vier werte teilen, Mitt. Math. Sem. | zh_TW |
dc.relation.reference (參考文獻) | Giessen, 200 (1991), 15-38. | zh_TW |
dc.relation.reference (參考文獻) | [32] M. Reinders, A new example of meromorphic functions | zh_TW |
dc.relation.reference (參考文獻) | sharing four values and a uniqueness theorem, Complex | zh_TW |
dc.relation.reference (參考文獻) | Variables, 18 (1992), 213-221. | zh_TW |
dc.relation.reference (參考文獻) | [33] N. Steinmetz, Eine Verallgemeinerung des zweiten | zh_TW |
dc.relation.reference (參考文獻) | Nevanlinnaschen Hauptsatzes, J. Reine Angew. Math., | zh_TW |
dc.relation.reference (參考文獻) | 368 (1986) 134-141. | zh_TW |
dc.relation.reference (參考文獻) | [34] S. P. Wang, On meromorphic functions that share four | zh_TW |
dc.relation.reference (參考文獻) | values, J. Math. Anal. Appl., 173 (1993), 359-369. | zh_TW |
dc.relation.reference (參考文獻) | [35] H. X. Yi and C. C. Yang, Uniqueness theory of | zh_TW |
dc.relation.reference (參考文獻) | meromorphic functions, Pure and Applied Math. | zh_TW |
dc.relation.reference (參考文獻) | Monographs No. 32, Science Press, Beijing, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [36] C. C. Yang, Some problems on polynomyals and | zh_TW |
dc.relation.reference (參考文獻) | transcendental entire functions, Adv. Math. | zh_TW |
dc.relation.reference (參考文獻) | (a Chinese Journal), 13 (1984), 1-3. | zh_TW |
dc.relation.reference (參考文獻) | [37] C. C. Yang. On deficiencies of differential | zh_TW |
dc.relation.reference (參考文獻) | polynomials, Math. Z., 116 (1970), 197-204. | zh_TW |
dc.relation.reference (參考文獻) | [38] L. Yang, Value distribution theory, Berlin Heidelberg: | zh_TW |
dc.relation.reference (參考文獻) | Springer-Verlag, Beijing:Science Press, 1993. | zh_TW |
dc.relation.reference (參考文獻) | [39] L. Z. Yang, Solution of a differential equation and its | zh_TW |
dc.relation.reference (參考文獻) | applications, Kodai Math. J. 22 (1990), No.3, 458-464. | zh_TW |
dc.relation.reference (參考文獻) | [40] Q. D. Zhang, A uniqueness theorem for meromorphic | zh_TW |
dc.relation.reference (參考文獻) | functions with respect to slowly growing functions, | zh_TW |
dc.relation.reference (參考文獻) | Acta Math. Sinica, 36(6) (1993), 826-833. | zh_TW |