dc.contributor.advisor | 張宜武 | zh_TW |
dc.contributor.author (Authors) | 吳仕傑 | zh_TW |
dc.creator (作者) | 吳仕傑 | zh_TW |
dc.date (日期) | 2007 | en_US |
dc.date.accessioned | 17-Sep-2009 13:48:14 (UTC+8) | - |
dc.date.available | 17-Sep-2009 13:48:14 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 13:48:14 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0094751011 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32588 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 94751011 | zh_TW |
dc.description (描述) | 96 | zh_TW |
dc.description.abstract (摘要) | 在這篇論文中,我們利用分離-收縮法(splitting-contraction algorithm)獲得一個擁有完全C邊以及循環D邊特性的圖之著色多項式。 假如一個混合超圖在點集合上有主要的循環, 使得所有的C邊和D邊包含一個主循環(host cycle)的連接子圖, 則稱此圖為循環的(circular)。 對於每個l≧2, 所有連續l個點會形成一個D邊時, 我們把D記作D_l。 如此一來, 超圖(X,Φ,D_2)就是圖論中n個點的普通循環。 我們先觀察擁有完全C邊和循環D邊的超圖, 利用分離-收縮法的第一步, 找到遞迴關係式並且解它。 然後我們就推廣到一般完全C邊及循環D邊的超圖。 | zh_TW |
dc.description.abstract (摘要) | In this thesis, we obtain the chromatic polynomial of a mixed hypergraph with complete C-edges and circular D-edges by using splitting-contraction algorithm. A mixed hypergraph H=(X,C,D) is called circular if there exists a host cycle on the vertex set X such that every C-edge and every D-edge induces a connected subgraph of the host cycle. For each l≧2, we denote D by D_l if and only if every l consecutive vertices of X form a D-edge. Thus the mixed hypergraph (X,Φ,D_2) is a simple classical cycle on n vertices. We observe first a mixed hypergraph with complete C-edges and D_2. By the first step of the splitting-contraction algorithm, we can find out the recurrence relation and solve it. Then we generalize the mixed hypergraph with complete C-edges and circular D-edges. | en_US |
dc.description.tableofcontents | Abstract.............................................i中文摘要.............................................ii1 Introduction.......................................12 Some Obvious Cases.................................4 2.1 Find P(H^(n)_4,λ)..............................53 The Relations of P(H^(n)_5,λ).....................14 3.1 Find P(H^(n)_5,λ).............................14 3.2 Find P(H^(n)_k,λ).............................154 Solving Π^(k)_n for λ^(k).........................17 4.1 Solutions for Π^(k)_n.........................17 4.2 Future Study..................................21References..........................................22 | zh_TW |
dc.format.extent | 84856 bytes | - |
dc.format.extent | 142453 bytes | - |
dc.format.extent | 33269 bytes | - |
dc.format.extent | 50812 bytes | - |
dc.format.extent | 83304 bytes | - |
dc.format.extent | 49253 bytes | - |
dc.format.extent | 61730 bytes | - |
dc.format.extent | 25737 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0094751011 | en_US |
dc.subject (關鍵詞) | 混合超圖 | zh_TW |
dc.subject (關鍵詞) | 分離-收縮法 | zh_TW |
dc.subject (關鍵詞) | 循環的 | zh_TW |
dc.subject (關鍵詞) | mixed hypergraph | en_US |
dc.subject (關鍵詞) | splitting-contraction algorithm | en_US |
dc.subject (關鍵詞) | circular | en_US |
dc.title (題名) | 完全C邊混合超圖的著色多項式 | zh_TW |
dc.title (題名) | The Chromatic Polynomial of A Mixed Hypergraph with Complete C-edges | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] Voloshin, V. (1993), The mixed hypergraphs, Comput. Sci. J. Moldova, 1, pp. 45-52. | zh_TW |
dc.relation.reference (參考文獻) | [2] Voloshin, V. and Voss, H.-J. (2000), Circular Mixed hypergraphs I: colorability and unique colorability, Congr. Numer., 144, pp. 207-219. | zh_TW |
dc.relation.reference (參考文獻) | [3] Voloshin, V. (2002), Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, American Mathematical Society. | zh_TW |
dc.relation.reference (參考文獻) | [4] West, D.B. (2001), Introduction to Graph Theory, 2nd ed., Prentice Hall. | zh_TW |