學術產出-學位論文

題名 位移與混合型離散過程對波動度模型之解析與實證
Displaced and Mixture Diffusions for Analytically-Tractable Smile Models
作者 林豪勵
Lin, Hao Li
貢獻者 陳松男
Chen, Son Nan
林豪勵
Lin, Hao Li
關鍵詞 資產價格的動態過程
風險中立機率測度
選擇權評價公式
波動度傾斜
波動度微笑
非線性規劃
參數校準
asset-price dynamics
risk-neutral density
option pricing formula
volatility skew
volatility smile
nonlinear programming
calibration of parameters
日期 2008
上傳時間 17-九月-2009 13:49:09 (UTC+8)
摘要 Brigo與Mercurio提出了三種新的資產價格過程,分別是位移CEV過程、位移對數常態過程與混合對數常態過程。在這三種過程中,資產價格的波動度不再是一個固定的常數,而是時間與資產價格的明確函數。而由這三種過程所推導出來的歐式選擇權評價公式,將會導致隱含波動度曲線呈現傾斜曲線或是微笑曲線,且提供了參數讓我們能夠配適市場的波動度結構。本文利用台指買權來實證Brigo與Mercurio所提出的三種歐式選擇權評價公式,我們發現校準結果以混合對數常態過程優於位移CEV過程,而位移CEV過程則稍優於位移對數常態過程。因此,在實務校準時,我們建議以混合對數常態過程為台指買權的評價模型,以達到較佳的校準結果。
Brigo and Mercurio proposed three types of asset-price dynamics which are shifted-CEV process, shifted-lognormal process and mixture-of-lognormals process respectively. In these three processes, the volatility of the asset price is no more a constant but a deterministic function of time and asset price. The European option pricing formulas derived from these three processes lead respectively to skew and smile in the term structure of implied volatilities. Also, the pricing formula provides several parameters for fitting the market volatility term structure. The thesis applies Taiwan’s call option to verifying these three pricing formulas proposed by Brigo and Mercurio. We find that the calibration result of mixture-of-lognormals process is better than the result of shifted-CEV process and the calibration result of shifted-CEV process is a little better than the result of shifted-lognormal process. Therefore, we recommend applying the pricing formula derived from mixture-of-lognormals process to getting a better calibration.
參考文獻 Black, F. and Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, pp. 637–654.
Brigo, D. and Mercurio, F., D. 2001. Displaced and mixture diffusions for analytically-tractable smile models. In: German, H., Madan, D.B., Pliska, S.R. and Vorst, A.C.F., Editors, 2001. Mathematical Finance Bachelier Congress 2000, Springer, Berlin.
Brigo, D. and Mercurio, F., 2002. Lognormal-mixture dynamics and calibration to market volatility smiles. International Journal of Theoretical and Applied Finance 5 4, pp. 427–446
Cox, J., 1975. Notes on option pricing I: Constant elasticity of variance diffusions. Working paper, Stanford University.
Cox, J. C. and Ross, S. A., 1976. The valuation of options for alternative stochastic processes. Journal of Financial Economics 3, pp. 145–166.
Jackwerth, J. C. and Rubinstein, M., 1996. Recovering probability distributions from option prices. Journal of Finance 51, pp. 1611–1631.
Rubinstein, M., 1994. Implied binomial trees. Journal of Finance 49, pp. 771–818.
描述 碩士
國立政治大學
應用數學研究所
95751004
97
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0095751004
資料類型 thesis
dc.contributor.advisor 陳松男zh_TW
dc.contributor.advisor Chen, Son Nanen_US
dc.contributor.author (作者) 林豪勵zh_TW
dc.contributor.author (作者) Lin, Hao Lien_US
dc.creator (作者) 林豪勵zh_TW
dc.creator (作者) Lin, Hao Lien_US
dc.date (日期) 2008en_US
dc.date.accessioned 17-九月-2009 13:49:09 (UTC+8)-
dc.date.available 17-九月-2009 13:49:09 (UTC+8)-
dc.date.issued (上傳時間) 17-九月-2009 13:49:09 (UTC+8)-
dc.identifier (其他 識別碼) G0095751004en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32597-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 95751004zh_TW
dc.description (描述) 97zh_TW
dc.description.abstract (摘要) Brigo與Mercurio提出了三種新的資產價格過程,分別是位移CEV過程、位移對數常態過程與混合對數常態過程。在這三種過程中,資產價格的波動度不再是一個固定的常數,而是時間與資產價格的明確函數。而由這三種過程所推導出來的歐式選擇權評價公式,將會導致隱含波動度曲線呈現傾斜曲線或是微笑曲線,且提供了參數讓我們能夠配適市場的波動度結構。本文利用台指買權來實證Brigo與Mercurio所提出的三種歐式選擇權評價公式,我們發現校準結果以混合對數常態過程優於位移CEV過程,而位移CEV過程則稍優於位移對數常態過程。因此,在實務校準時,我們建議以混合對數常態過程為台指買權的評價模型,以達到較佳的校準結果。zh_TW
dc.description.abstract (摘要) Brigo and Mercurio proposed three types of asset-price dynamics which are shifted-CEV process, shifted-lognormal process and mixture-of-lognormals process respectively. In these three processes, the volatility of the asset price is no more a constant but a deterministic function of time and asset price. The European option pricing formulas derived from these three processes lead respectively to skew and smile in the term structure of implied volatilities. Also, the pricing formula provides several parameters for fitting the market volatility term structure. The thesis applies Taiwan’s call option to verifying these three pricing formulas proposed by Brigo and Mercurio. We find that the calibration result of mixture-of-lognormals process is better than the result of shifted-CEV process and the calibration result of shifted-CEV process is a little better than the result of shifted-lognormal process. Therefore, we recommend applying the pricing formula derived from mixture-of-lognormals process to getting a better calibration.en_US
dc.description.tableofcontents 摘要 i
ABSTRACT ii
目錄 iii
表目錄 iv
圖目錄 v
第一章 緒論 1
1.1 研究動機與目的 1
1.2 論文架構 3
第二章 文獻回顧 3
2.1 BLACK與SCHOLES之歐式選擇權平價公式 4
2.2 COX與ROSS之歐式選擇權平價公式 6
2.3 BRIGO與MERCURIO之位移過程評價方法 9
2.4 RUBINSTEIN之還原測度評價方法 12
2.5 BRIGO與MERCURIO之混合過程評價方法 13
第三章 主要理論介紹 15
3.1 取代資產價格過程 15
3.1.1 明確係數下的位移CEV過程 17
3.1.2 位移對數常態過程 18
3.2 一般化混合動態過程 20
3.2.1 混合對數常態過程 23
第四章 實證研究 26
4.1 位移CEV過程校準結果 26
4.2 位移對數常態過程校準結果 31
4.3 混合對數常態過程校準結果 35
4.4 實證結果分析 40
第五章 結論 43
參考文獻 44
zh_TW
dc.format.extent 96611 bytes-
dc.format.extent 112131 bytes-
dc.format.extent 107042 bytes-
dc.format.extent 133746 bytes-
dc.format.extent 188810 bytes-
dc.format.extent 194306 bytes-
dc.format.extent 231201 bytes-
dc.format.extent 120822 bytes-
dc.format.extent 85697 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0095751004en_US
dc.subject (關鍵詞) 資產價格的動態過程zh_TW
dc.subject (關鍵詞) 風險中立機率測度zh_TW
dc.subject (關鍵詞) 選擇權評價公式zh_TW
dc.subject (關鍵詞) 波動度傾斜zh_TW
dc.subject (關鍵詞) 波動度微笑zh_TW
dc.subject (關鍵詞) 非線性規劃zh_TW
dc.subject (關鍵詞) 參數校準zh_TW
dc.subject (關鍵詞) asset-price dynamicsen_US
dc.subject (關鍵詞) risk-neutral densityen_US
dc.subject (關鍵詞) option pricing formulaen_US
dc.subject (關鍵詞) volatility skewen_US
dc.subject (關鍵詞) volatility smileen_US
dc.subject (關鍵詞) nonlinear programmingen_US
dc.subject (關鍵詞) calibration of parametersen_US
dc.title (題名) 位移與混合型離散過程對波動度模型之解析與實證zh_TW
dc.title (題名) Displaced and Mixture Diffusions for Analytically-Tractable Smile Modelsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Black, F. and Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, pp. 637–654.zh_TW
dc.relation.reference (參考文獻) Brigo, D. and Mercurio, F., D. 2001. Displaced and mixture diffusions for analytically-tractable smile models. In: German, H., Madan, D.B., Pliska, S.R. and Vorst, A.C.F., Editors, 2001. Mathematical Finance Bachelier Congress 2000, Springer, Berlin.zh_TW
dc.relation.reference (參考文獻) Brigo, D. and Mercurio, F., 2002. Lognormal-mixture dynamics and calibration to market volatility smiles. International Journal of Theoretical and Applied Finance 5 4, pp. 427–446zh_TW
dc.relation.reference (參考文獻) Cox, J., 1975. Notes on option pricing I: Constant elasticity of variance diffusions. Working paper, Stanford University.zh_TW
dc.relation.reference (參考文獻) Cox, J. C. and Ross, S. A., 1976. The valuation of options for alternative stochastic processes. Journal of Financial Economics 3, pp. 145–166.zh_TW
dc.relation.reference (參考文獻) Jackwerth, J. C. and Rubinstein, M., 1996. Recovering probability distributions from option prices. Journal of Finance 51, pp. 1611–1631.zh_TW
dc.relation.reference (參考文獻) Rubinstein, M., 1994. Implied binomial trees. Journal of Finance 49, pp. 771–818.zh_TW