學術產出-學位論文

題名 同倫擾動法對於范德波爾方程的研究
Homotopy Perturbation Method for Van Der Pol Equation
作者 劉凱元
Liu, Kai-yuan
貢獻者 蔡隆義
Tsai, Long-yi
劉凱元
Liu, Kai-yuan
關鍵詞 擾動法
同倫
范德波爾方程
Perturbation Method
Homotopy
Van Der Pol Equation
日期 2004
上傳時間 17-九月-2009 13:49:30 (UTC+8)
摘要 在這篇論文中,我們探討了在任何正參數之下,范德波爾方程的極限環結果。藉由改良後的同倫擾動方法,我們求得了一些極限環的近似結果。
相對於傳統的擾動方法,這種同倫方法在方程中並不受限於小的參數。除此之外,我們也設計了一個演算法來計算極限環的近似振幅及頻率。
In this thesis, we study the limit cycle of van der Pol equation for parameter ε>0. We give some approximate results to the limit cycle by using the modified homotopy perturbation technique. In constract to the traditional perturbation methods, this homotopy method does not require a small parameter in the equation. Besides, we also devise a new algorithm to find the approximate amplitude and frequency of the limit cycle.
參考文獻 [1] Andersen, C.M. and J.F. Geer, Power series expansions for the frequency and period of the limit cycle of the van der Pol equation, SIAM Journal on Applied Mathematics 42, pp. 678-693, (1982).
[2] Buonomo, A., The periodic solution of van der Pol`s equation, SIAM Journal on Applied Mathematics 59, 1, pp156-171, (1998).
[3] Dadfar, M.B., J. Geer, and C.M. Andersen, Perturbation analysis of the limit cycle of the free van der Pol equation, SIAM Journal on Applied Mathematics 44, pp. 881-895, (1984).
[4] Ferdinand Verhulst, Nonlinear differential equations and dynamical systems, Springer-Verlag Berlin Heidelberg New York, (1996).
[5] He, J.H., Homotopy perturbation technique, Computer Methods in Applied Mechanics Engineering 178, pp.257-262, (1999).
[6] He, J.H., Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part I: expansion of a constant, International Journal of Non-Linear Mechanics 37, pp. 309 -314, (2002).
[7] He, J,H, Modified Lindstedt Poincar□ methods for some strongly non-linear oscillations Part II: a new transformation, International Journal of Non-Linear Mechanics 37, pp. 315-320, (2002).
[8] He, J.H., Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation 135, pp. 73-79, (2003).
[9] Liao, S.J., An approximate solution technique not depending on small parameters: a special example, International Journal of Nonlinear Mechanics 30, 371-380, (1995).
[10] Li□nard, A.M., □tude des oscillations entretenues, Revue G□n□rale de l`□lectricit□ 23, pp. 901-912 and pp. 946-954, (1928).
[11] Lin, C.C., Mathematics applicated to deterministic problems in natural sciences, Macmillan, New York, (1974).
[12] 劉秉正, 非線性動力學與混沌基礎, 徐氏基金會, (1998).
[13] Nayfeh, A.H., Introduction to Perturbation Techniques, Wiley, New York, (1981).
[14] Nayfeh, A.H., Problems in Perturbation, Wiley, New York, (1985).
[15] Ronald. E. Mickens. An Introduction to Nonlinear Oscillations, Combridge University Press, (1981).
[16] Shih, S.D., On periodic orbits of relaxation oscillations, Taiwanese Journal of Mathematics 6, 2, pp. 205-234, (2002).
[17] Van der Pol, B., On "relaxation-oscillations," Philosophical Magazine, 2, pp. 978-992, (1926)
[18] Urabe, M., Periodic solutions of van der Pol`s equation with damping coefficient λ = 0 - 10, IEEE Transactions Circuit Theory, CT-7, pp. 382--386, (1960).
描述 碩士
國立政治大學
應用數學研究所
90751001
93
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0907510012
資料類型 thesis
dc.contributor.advisor 蔡隆義zh_TW
dc.contributor.advisor Tsai, Long-yien_US
dc.contributor.author (作者) 劉凱元zh_TW
dc.contributor.author (作者) Liu, Kai-yuanen_US
dc.creator (作者) 劉凱元zh_TW
dc.creator (作者) Liu, Kai-yuanen_US
dc.date (日期) 2004en_US
dc.date.accessioned 17-九月-2009 13:49:30 (UTC+8)-
dc.date.available 17-九月-2009 13:49:30 (UTC+8)-
dc.date.issued (上傳時間) 17-九月-2009 13:49:30 (UTC+8)-
dc.identifier (其他 識別碼) G0907510012en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32600-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 90751001zh_TW
dc.description (描述) 93zh_TW
dc.description.abstract (摘要) 在這篇論文中,我們探討了在任何正參數之下,范德波爾方程的極限環結果。藉由改良後的同倫擾動方法,我們求得了一些極限環的近似結果。
相對於傳統的擾動方法,這種同倫方法在方程中並不受限於小的參數。除此之外,我們也設計了一個演算法來計算極限環的近似振幅及頻率。
zh_TW
dc.description.abstract (摘要) In this thesis, we study the limit cycle of van der Pol equation for parameter ε>0. We give some approximate results to the limit cycle by using the modified homotopy perturbation technique. In constract to the traditional perturbation methods, this homotopy method does not require a small parameter in the equation. Besides, we also devise a new algorithm to find the approximate amplitude and frequency of the limit cycle.en_US
dc.description.tableofcontents Section 1 Introduction......................................1
Section 2 Existence and Uniqueness of Stable Limit Cycle....3
Section 3 Some Traditional Perturbation Results.............6
Section 4 Modified Homotopy Perturbation Method.............9
Section 5 Numerical Comparison.............................27
Section 6 Discussion and Open Problems.....................32
References......................,..........................40
Appendix...........................,.......................42
zh_TW
dc.format.extent 68704 bytes-
dc.format.extent 96212 bytes-
dc.format.extent 29373 bytes-
dc.format.extent 99348 bytes-
dc.format.extent 153927 bytes-
dc.format.extent 122824 bytes-
dc.format.extent 203735 bytes-
dc.format.extent 168959 bytes-
dc.format.extent 138451 bytes-
dc.format.extent 101659 bytes-
dc.format.extent 87123 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0907510012en_US
dc.subject (關鍵詞) 擾動法zh_TW
dc.subject (關鍵詞) 同倫zh_TW
dc.subject (關鍵詞) 范德波爾方程zh_TW
dc.subject (關鍵詞) Perturbation Methoden_US
dc.subject (關鍵詞) Homotopyen_US
dc.subject (關鍵詞) Van Der Pol Equationen_US
dc.title (題名) 同倫擾動法對於范德波爾方程的研究zh_TW
dc.title (題名) Homotopy Perturbation Method for Van Der Pol Equationen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] Andersen, C.M. and J.F. Geer, Power series expansions for the frequency and period of the limit cycle of the van der Pol equation, SIAM Journal on Applied Mathematics 42, pp. 678-693, (1982).zh_TW
dc.relation.reference (參考文獻) [2] Buonomo, A., The periodic solution of van der Pol`s equation, SIAM Journal on Applied Mathematics 59, 1, pp156-171, (1998).zh_TW
dc.relation.reference (參考文獻) [3] Dadfar, M.B., J. Geer, and C.M. Andersen, Perturbation analysis of the limit cycle of the free van der Pol equation, SIAM Journal on Applied Mathematics 44, pp. 881-895, (1984).zh_TW
dc.relation.reference (參考文獻) [4] Ferdinand Verhulst, Nonlinear differential equations and dynamical systems, Springer-Verlag Berlin Heidelberg New York, (1996).zh_TW
dc.relation.reference (參考文獻) [5] He, J.H., Homotopy perturbation technique, Computer Methods in Applied Mechanics Engineering 178, pp.257-262, (1999).zh_TW
dc.relation.reference (參考文獻) [6] He, J.H., Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part I: expansion of a constant, International Journal of Non-Linear Mechanics 37, pp. 309 -314, (2002).zh_TW
dc.relation.reference (參考文獻) [7] He, J,H, Modified Lindstedt Poincar□ methods for some strongly non-linear oscillations Part II: a new transformation, International Journal of Non-Linear Mechanics 37, pp. 315-320, (2002).zh_TW
dc.relation.reference (參考文獻) [8] He, J.H., Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation 135, pp. 73-79, (2003).zh_TW
dc.relation.reference (參考文獻) [9] Liao, S.J., An approximate solution technique not depending on small parameters: a special example, International Journal of Nonlinear Mechanics 30, 371-380, (1995).zh_TW
dc.relation.reference (參考文獻) [10] Li□nard, A.M., □tude des oscillations entretenues, Revue G□n□rale de l`□lectricit□ 23, pp. 901-912 and pp. 946-954, (1928).zh_TW
dc.relation.reference (參考文獻) [11] Lin, C.C., Mathematics applicated to deterministic problems in natural sciences, Macmillan, New York, (1974).zh_TW
dc.relation.reference (參考文獻) [12] 劉秉正, 非線性動力學與混沌基礎, 徐氏基金會, (1998).zh_TW
dc.relation.reference (參考文獻) [13] Nayfeh, A.H., Introduction to Perturbation Techniques, Wiley, New York, (1981).zh_TW
dc.relation.reference (參考文獻) [14] Nayfeh, A.H., Problems in Perturbation, Wiley, New York, (1985).zh_TW
dc.relation.reference (參考文獻) [15] Ronald. E. Mickens. An Introduction to Nonlinear Oscillations, Combridge University Press, (1981).zh_TW
dc.relation.reference (參考文獻) [16] Shih, S.D., On periodic orbits of relaxation oscillations, Taiwanese Journal of Mathematics 6, 2, pp. 205-234, (2002).zh_TW
dc.relation.reference (參考文獻) [17] Van der Pol, B., On "relaxation-oscillations," Philosophical Magazine, 2, pp. 978-992, (1926)zh_TW
dc.relation.reference (參考文獻) [18] Urabe, M., Periodic solutions of van der Pol`s equation with damping coefficient λ = 0 - 10, IEEE Transactions Circuit Theory, CT-7, pp. 382--386, (1960).zh_TW