dc.contributor.advisor | 劉明郎 | zh_TW |
dc.contributor.author (Authors) | 張瓊方 | zh_TW |
dc.contributor.author (Authors) | Chang, Chiung-Fang | en_US |
dc.creator (作者) | 張瓊方 | zh_TW |
dc.creator (作者) | Chang, Chiung-Fang | en_US |
dc.date (日期) | 2005 | en_US |
dc.date.accessioned | 17-Sep-2009 13:49:59 (UTC+8) | - |
dc.date.available | 17-Sep-2009 13:49:59 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 13:49:59 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0917510051 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32604 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 91751005 | zh_TW |
dc.description (描述) | 94 | zh_TW |
dc.description.abstract (摘要) | 本論文提出線性規劃的方法以還原隱藏於選擇權市場價格中的風險中立機率測度,並利用該機率測度計算選擇權的合理價格。模型中假設選擇權對應同一標的資產與到期日,資產價格於到期日的狀態為離散點且個數有限,當市場不具任何套利機會時,以極小化市場價格與合理價格之離差總和作為挑選風險中立機率測度的準則。最後,以臺指選擇權(TXO)的交易資料做為實證對象。實證中發現,加入平滑限制式與離差權重之線性規劃模型在評價歐式選擇權合理價格的效能最為優異。 | zh_TW |
dc.description.abstract (摘要) | The thesis proposes a liner programming to recover the risk-neutral probability distribution of an underlying asset price from its associated market option prices, and we evaluate the fair prices of options via the resulting risk-neutral probability distribution. Assume that we face a series of European options with different exercise prices on the same maturity and underlying asset in this linear programming model. The criterion of choosing a risk-neutral probability distribution is minimizing the sum of total deviations subject to requiring that the fair prices of options are consistent with observed market option prices. Finally, we take the trading data of TXO as an empirical study. The empirical study indicates that the model with smooth constraints and weighted deviations has the best performance in pricing the rational price of European options. | en_US |
dc.description.tableofcontents | 摘要..................................................iiiABSTRACT...............................................iv表目錄.................................................vi圖目錄................................................vii第一章 緒論.............................................1 1.1 研究動機與研究方法..............................1 1.2 文章架構........................................2第二章 文獻回顧.........................................3第三章選擇權評價理論與無套利機會之檢測..................6 3.1 選擇權評價理論..................................6 3.1.1 Black-Scholes歐式選擇權評價模型...........6 3.1.2 平賭過程評價方法...........................8 3.2 還原風險中立機率測度法則.......................11 3.2.1 無母數還原風險中立機率測度法..............11 3.2.2 還原風險中立機率測度之線性規劃模型........13 3.3 無套利機會之檢測法..............................17第四章 由選擇權市場價格還原風險中立機率測度模型........22第五章 實證分析........................................26 5.1 實證資料來源與選取.............................26 5.2 實證結果分析...................................27 5.3 平滑風險中立機率測度曲線.....................29 5.3.1 直觀法修正風險中立機率測度之曲線..........29 5.3.2 考慮相鄰三點間的機率限制..................31 5.3.3 考慮成交量之影響..........................33第六章 結論............................................46參考文獻...............................................47 | zh_TW |
dc.format.extent | 8725 bytes | - |
dc.format.extent | 11207 bytes | - |
dc.format.extent | 10369 bytes | - |
dc.format.extent | 16287 bytes | - |
dc.format.extent | 12458 bytes | - |
dc.format.extent | 19966 bytes | - |
dc.format.extent | 82819 bytes | - |
dc.format.extent | 35751 bytes | - |
dc.format.extent | 209179 bytes | - |
dc.format.extent | 11222 bytes | - |
dc.format.extent | 20965 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0917510051 | en_US |
dc.subject (關鍵詞) | 選擇權交易策略 | zh_TW |
dc.subject (關鍵詞) | 線性規劃 | zh_TW |
dc.subject (關鍵詞) | 套利機會 | zh_TW |
dc.subject (關鍵詞) | 風險中立機率測度 | zh_TW |
dc.subject (關鍵詞) | 選擇權評價公式 | zh_TW |
dc.subject (關鍵詞) | option trading strategy | en_US |
dc.subject (關鍵詞) | linear programming | en_US |
dc.subject (關鍵詞) | arbitrage opportunity | en_US |
dc.subject (關鍵詞) | risk-neutral probability | en_US |
dc.subject (關鍵詞) | option pricing formula | en_US |
dc.title (題名) | 由市場的選擇權價格還原風險中立機率分布 | zh_TW |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | Black, F. and M. Scholes (1973), "The Pricing of Options and Corporate Liabilities." Journal of Political Economy 81(3), 637-659. | zh_TW |
dc.relation.reference (參考文獻) | Breeden, D.T. and R.H. Litzenberger (1978), "Prices of State Contingent Claims Implicit in Option Prices." Journal of Business 51, 621-652. | zh_TW |
dc.relation.reference (參考文獻) | Brooke, A., D. Kendrick, and A. Meeraus (1988), GAMS - A User’s Guide, The Scientific Press, Redwood City, CA. | zh_TW |
dc.relation.reference (參考文獻) | Černý, A. (2004), Mathematical Techniques in Finance: Tools for Incomplete Markets, Princeton University Press, Imperial College London. | zh_TW |
dc.relation.reference (參考文獻) | Cox, J. and S. Ross (1976), "The Valuation of Options for Alternative Stochastic Process." Journal of Financial Economics 3, 145-166. | zh_TW |
dc.relation.reference (參考文獻) | Cox, J. and S. Ross and M. Rubinstein (1979), "Option Pricing: A Simplified Approach." Journal of Financial Economics 7(3), 229-263. | zh_TW |
dc.relation.reference (參考文獻) | CPLEX Optimization, Inc. (1993), Using the CPLEX Callable Library and CPLEX Mixed Integer Library, Incline Village, NY. | zh_TW |
dc.relation.reference (參考文獻) | GAMS Development Corporation (2003), GAMS - The Solver Manual, Washington, DC. | zh_TW |
dc.relation.reference (參考文獻) | Harrison, J. and D. Kerps (1979), "Martingales and Multiperiod Securities Markets." Journal of Ecnomic Theory 20, 381-408. | zh_TW |
dc.relation.reference (參考文獻) | Harrison, J. and S. Pliska (1981), "Martingales and Stochastic Integrals in the Theory of Continuous Time Trading." Stochastic Processes and their Applications 11, 215-260. | zh_TW |
dc.relation.reference (參考文獻) | Ito, K. (1951), "On Stochastic Differencial Equation Memories." American Mathematical Society 4, 1-51. | zh_TW |
dc.relation.reference (參考文獻) | Merton, R. C. (1973), "Theory of Rational Option Pricing." Bell Journal of Economics and Management Science 4, Spring, 141-183. | zh_TW |
dc.relation.reference (參考文獻) | Merton, R. C., M. S. Scholes, and M. L. Gladstein (1978), "The Returns and Risk of Alternative Call Option Portfolio Strategies." Journal of Business 51, 183-241. | zh_TW |
dc.relation.reference (參考文獻) | Papahristodoulou, C. (2004), "Option Strategies with Linear Programming." European Journal of Operational Research 157, 246-256. | zh_TW |
dc.relation.reference (參考文獻) | Prisman, E. Z., "Valuation of Risky Assets in Arbitrage-Free Economies with Frictions." The Journal of Finance 41(3), 293-305. | zh_TW |
dc.relation.reference (參考文獻) | Rendleman, R. J. (1995), "An LP Approach to Option Portfolio Selection." Advances in Futures and Options Research 8, 31-52. | zh_TW |
dc.relation.reference (參考文獻) | Rubinstein, M. and J. Jackwerth (1996), "Recovering Probability Distributions from Option Prices." The Journal of Finance 51(5),1611-1631. | zh_TW |
dc.relation.reference (參考文獻) | Rubinstein, M. (1994), "Implied Binomial Trees." Journal of Finance 49(3), 771-818. | zh_TW |
dc.relation.reference (參考文獻) | Herzel, S. (2005), "Arbitrage Opportunities on Derivatives: a Linear Programming Approach." Dynamics of Continuous, Discrete, and Impulsive Systems, Series B: Applications and Algorithms 12(4), 589-606. | zh_TW |
dc.relation.reference (參考文獻) | 謝劍平 (2000),現代投資學,智勝文化。 | zh_TW |
dc.relation.reference (參考文獻) | 陳松男 (2003),基礎選擇權與期貨,新陸書局。 | zh_TW |
dc.relation.reference (參考文獻) | 楊靜宜 (2004),選擇權交易策略的整數線性規劃模型,政治大學應用數學系碩士論文。 | zh_TW |
dc.relation.reference (參考文獻) | 劉桂芳 (2005),由選擇權市場價格建構具一致性之評價模型-使用線性規劃,政治大學應用數學系碩士論文。 | zh_TW |