Publications-Theses

題名 由市場的選擇權價格還原風險中立機率分布
作者 張瓊方
Chang, Chiung-Fang
貢獻者 劉明郎
張瓊方
Chang, Chiung-Fang
關鍵詞 選擇權交易策略
線性規劃
套利機會
風險中立機率測度
選擇權評價公式
option trading strategy
linear programming
arbitrage opportunity
risk-neutral probability
option pricing formula
日期 2005
上傳時間 17-Sep-2009 13:49:59 (UTC+8)
摘要 本論文提出線性規劃的方法以還原隱藏於選擇權市場價格中的風險中立機率測度,並利用該機率測度計算選擇權的合理價格。模型中假設選擇權對應同一標的資產與到期日,資產價格於到期日的狀態為離散點且個數有限,當市場不具任何套利機會時,以極小化市場價格與合理價格之離差總和作為挑選風險中立機率測度的準則。最後,以臺指選擇權(TXO)的交易資料做為實證對象。實證中發現,加入平滑限制式與離差權重之線性規劃模型在評價歐式選擇權合理價格的效能最為優異。
The thesis proposes a liner programming to recover the risk-neutral probability distribution of an underlying asset price from its associated market option prices, and we evaluate the fair prices of options via the resulting risk-neutral probability distribution. Assume that we face a series of European options with different exercise prices on the same maturity and underlying asset in this linear programming model. The criterion of choosing a risk-neutral probability distribution is minimizing the sum of total deviations subject to requiring that the fair prices of options are consistent with observed market option prices. Finally, we take the trading data of TXO as an empirical study. The empirical study indicates that the model with smooth constraints and weighted deviations has the best performance in pricing the rational price of European options.
參考文獻 Black, F. and M. Scholes (1973), "The Pricing of Options and Corporate Liabilities." Journal of Political Economy 81(3), 637-659.
Breeden, D.T. and R.H. Litzenberger (1978), "Prices of State Contingent Claims Implicit in Option Prices." Journal of Business 51, 621-652.
Brooke, A., D. Kendrick, and A. Meeraus (1988), GAMS - A User’s Guide, The Scientific Press, Redwood City, CA.
Černý, A. (2004), Mathematical Techniques in Finance: Tools for Incomplete Markets, Princeton University Press, Imperial College London.
Cox, J. and S. Ross (1976), "The Valuation of Options for Alternative Stochastic Process." Journal of Financial Economics 3, 145-166.
Cox, J. and S. Ross and M. Rubinstein (1979), "Option Pricing: A Simplified Approach." Journal of Financial Economics 7(3), 229-263.
CPLEX Optimization, Inc. (1993), Using the CPLEX Callable Library and CPLEX Mixed Integer Library, Incline Village, NY.
GAMS Development Corporation (2003), GAMS - The Solver Manual, Washington, DC.
Harrison, J. and D. Kerps (1979), "Martingales and Multiperiod Securities Markets." Journal of Ecnomic Theory 20, 381-408.
Harrison, J. and S. Pliska (1981), "Martingales and Stochastic Integrals in the Theory of Continuous Time Trading." Stochastic Processes and their Applications 11, 215-260.
Ito, K. (1951), "On Stochastic Differencial Equation Memories." American Mathematical Society 4, 1-51.
Merton, R. C. (1973), "Theory of Rational Option Pricing." Bell Journal of Economics and Management Science 4, Spring, 141-183.
Merton, R. C., M. S. Scholes, and M. L. Gladstein (1978), "The Returns and Risk of Alternative Call Option Portfolio Strategies." Journal of Business 51, 183-241.
Papahristodoulou, C. (2004), "Option Strategies with Linear Programming." European Journal of Operational Research 157, 246-256.
Prisman, E. Z., "Valuation of Risky Assets in Arbitrage-Free Economies with Frictions." The Journal of Finance 41(3), 293-305.
Rendleman, R. J. (1995), "An LP Approach to Option Portfolio Selection." Advances in Futures and Options Research 8, 31-52.
Rubinstein, M. and J. Jackwerth (1996), "Recovering Probability Distributions from Option Prices." The Journal of Finance 51(5),1611-1631.
Rubinstein, M. (1994), "Implied Binomial Trees." Journal of Finance 49(3), 771-818.
Herzel, S. (2005), "Arbitrage Opportunities on Derivatives: a Linear Programming Approach." Dynamics of Continuous, Discrete, and Impulsive Systems, Series B: Applications and Algorithms 12(4), 589-606.
謝劍平 (2000),現代投資學,智勝文化。
陳松男 (2003),基礎選擇權與期貨,新陸書局。
楊靜宜 (2004),選擇權交易策略的整數線性規劃模型,政治大學應用數學系碩士論文。
劉桂芳 (2005),由選擇權市場價格建構具一致性之評價模型-使用線性規劃,政治大學應用數學系碩士論文。
描述 碩士
國立政治大學
應用數學研究所
91751005
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0917510051
資料類型 thesis
dc.contributor.advisor 劉明郎zh_TW
dc.contributor.author (Authors) 張瓊方zh_TW
dc.contributor.author (Authors) Chang, Chiung-Fangen_US
dc.creator (作者) 張瓊方zh_TW
dc.creator (作者) Chang, Chiung-Fangen_US
dc.date (日期) 2005en_US
dc.date.accessioned 17-Sep-2009 13:49:59 (UTC+8)-
dc.date.available 17-Sep-2009 13:49:59 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 13:49:59 (UTC+8)-
dc.identifier (Other Identifiers) G0917510051en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32604-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 91751005zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 本論文提出線性規劃的方法以還原隱藏於選擇權市場價格中的風險中立機率測度,並利用該機率測度計算選擇權的合理價格。模型中假設選擇權對應同一標的資產與到期日,資產價格於到期日的狀態為離散點且個數有限,當市場不具任何套利機會時,以極小化市場價格與合理價格之離差總和作為挑選風險中立機率測度的準則。最後,以臺指選擇權(TXO)的交易資料做為實證對象。實證中發現,加入平滑限制式與離差權重之線性規劃模型在評價歐式選擇權合理價格的效能最為優異。zh_TW
dc.description.abstract (摘要) The thesis proposes a liner programming to recover the risk-neutral probability distribution of an underlying asset price from its associated market option prices, and we evaluate the fair prices of options via the resulting risk-neutral probability distribution. Assume that we face a series of European options with different exercise prices on the same maturity and underlying asset in this linear programming model. The criterion of choosing a risk-neutral probability distribution is minimizing the sum of total deviations subject to requiring that the fair prices of options are consistent with observed market option prices. Finally, we take the trading data of TXO as an empirical study. The empirical study indicates that the model with smooth constraints and weighted deviations has the best performance in pricing the rational price of European options.en_US
dc.description.tableofcontents 摘要..................................................iii
ABSTRACT...............................................iv
表目錄.................................................vi
圖目錄................................................vii
第一章 緒論.............................................1
1.1 研究動機與研究方法..............................1
1.2 文章架構........................................2
第二章 文獻回顧.........................................3
第三章選擇權評價理論與無套利機會之檢測..................6
3.1 選擇權評價理論..................................6
3.1.1 Black-Scholes歐式選擇權評價模型...........6
3.1.2 平賭過程評價方法...........................8
3.2 還原風險中立機率測度法則.......................11
3.2.1 無母數還原風險中立機率測度法..............11
3.2.2 還原風險中立機率測度之線性規劃模型........13
3.3 無套利機會之檢測法..............................17
第四章 由選擇權市場價格還原風險中立機率測度模型........22
第五章 實證分析........................................26
5.1 實證資料來源與選取.............................26
5.2 實證結果分析...................................27
5.3 平滑風險中立機率測度曲線.....................29
5.3.1 直觀法修正風險中立機率測度之曲線..........29
5.3.2 考慮相鄰三點間的機率限制..................31
5.3.3 考慮成交量之影響..........................33
第六章 結論............................................46
參考文獻...............................................47
zh_TW
dc.format.extent 8725 bytes-
dc.format.extent 11207 bytes-
dc.format.extent 10369 bytes-
dc.format.extent 16287 bytes-
dc.format.extent 12458 bytes-
dc.format.extent 19966 bytes-
dc.format.extent 82819 bytes-
dc.format.extent 35751 bytes-
dc.format.extent 209179 bytes-
dc.format.extent 11222 bytes-
dc.format.extent 20965 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0917510051en_US
dc.subject (關鍵詞) 選擇權交易策略zh_TW
dc.subject (關鍵詞) 線性規劃zh_TW
dc.subject (關鍵詞) 套利機會zh_TW
dc.subject (關鍵詞) 風險中立機率測度zh_TW
dc.subject (關鍵詞) 選擇權評價公式zh_TW
dc.subject (關鍵詞) option trading strategyen_US
dc.subject (關鍵詞) linear programmingen_US
dc.subject (關鍵詞) arbitrage opportunityen_US
dc.subject (關鍵詞) risk-neutral probabilityen_US
dc.subject (關鍵詞) option pricing formulaen_US
dc.title (題名) 由市場的選擇權價格還原風險中立機率分布zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Black, F. and M. Scholes (1973), "The Pricing of Options and Corporate Liabilities." Journal of Political Economy 81(3), 637-659.zh_TW
dc.relation.reference (參考文獻) Breeden, D.T. and R.H. Litzenberger (1978), "Prices of State Contingent Claims Implicit in Option Prices." Journal of Business 51, 621-652.zh_TW
dc.relation.reference (參考文獻) Brooke, A., D. Kendrick, and A. Meeraus (1988), GAMS - A User’s Guide, The Scientific Press, Redwood City, CA.zh_TW
dc.relation.reference (參考文獻) Černý, A. (2004), Mathematical Techniques in Finance: Tools for Incomplete Markets, Princeton University Press, Imperial College London.zh_TW
dc.relation.reference (參考文獻) Cox, J. and S. Ross (1976), "The Valuation of Options for Alternative Stochastic Process." Journal of Financial Economics 3, 145-166.zh_TW
dc.relation.reference (參考文獻) Cox, J. and S. Ross and M. Rubinstein (1979), "Option Pricing: A Simplified Approach." Journal of Financial Economics 7(3), 229-263.zh_TW
dc.relation.reference (參考文獻) CPLEX Optimization, Inc. (1993), Using the CPLEX Callable Library and CPLEX Mixed Integer Library, Incline Village, NY.zh_TW
dc.relation.reference (參考文獻) GAMS Development Corporation (2003), GAMS - The Solver Manual, Washington, DC.zh_TW
dc.relation.reference (參考文獻) Harrison, J. and D. Kerps (1979), "Martingales and Multiperiod Securities Markets." Journal of Ecnomic Theory 20, 381-408.zh_TW
dc.relation.reference (參考文獻) Harrison, J. and S. Pliska (1981), "Martingales and Stochastic Integrals in the Theory of Continuous Time Trading." Stochastic Processes and their Applications 11, 215-260.zh_TW
dc.relation.reference (參考文獻) Ito, K. (1951), "On Stochastic Differencial Equation Memories." American Mathematical Society 4, 1-51.zh_TW
dc.relation.reference (參考文獻) Merton, R. C. (1973), "Theory of Rational Option Pricing." Bell Journal of Economics and Management Science 4, Spring, 141-183.zh_TW
dc.relation.reference (參考文獻) Merton, R. C., M. S. Scholes, and M. L. Gladstein (1978), "The Returns and Risk of Alternative Call Option Portfolio Strategies." Journal of Business 51, 183-241.zh_TW
dc.relation.reference (參考文獻) Papahristodoulou, C. (2004), "Option Strategies with Linear Programming." European Journal of Operational Research 157, 246-256.zh_TW
dc.relation.reference (參考文獻) Prisman, E. Z., "Valuation of Risky Assets in Arbitrage-Free Economies with Frictions." The Journal of Finance 41(3), 293-305.zh_TW
dc.relation.reference (參考文獻) Rendleman, R. J. (1995), "An LP Approach to Option Portfolio Selection." Advances in Futures and Options Research 8, 31-52.zh_TW
dc.relation.reference (參考文獻) Rubinstein, M. and J. Jackwerth (1996), "Recovering Probability Distributions from Option Prices." The Journal of Finance 51(5),1611-1631.zh_TW
dc.relation.reference (參考文獻) Rubinstein, M. (1994), "Implied Binomial Trees." Journal of Finance 49(3), 771-818.zh_TW
dc.relation.reference (參考文獻) Herzel, S. (2005), "Arbitrage Opportunities on Derivatives: a Linear Programming Approach." Dynamics of Continuous, Discrete, and Impulsive Systems, Series B: Applications and Algorithms 12(4), 589-606.zh_TW
dc.relation.reference (參考文獻) 謝劍平 (2000),現代投資學,智勝文化。zh_TW
dc.relation.reference (參考文獻) 陳松男 (2003),基礎選擇權與期貨,新陸書局。zh_TW
dc.relation.reference (參考文獻) 楊靜宜 (2004),選擇權交易策略的整數線性規劃模型,政治大學應用數學系碩士論文。zh_TW
dc.relation.reference (參考文獻) 劉桂芳 (2005),由選擇權市場價格建構具一致性之評價模型-使用線性規劃,政治大學應用數學系碩士論文。zh_TW