dc.contributor.advisor | 張宜武 | zh_TW |
dc.contributor.author (Authors) | 郭威廷 | zh_TW |
dc.contributor.author (Authors) | Kuo, Wei-Ting | en_US |
dc.creator (作者) | 郭威廷 | zh_TW |
dc.creator (作者) | Kuo, Wei-Ting | en_US |
dc.date (日期) | 2005 | en_US |
dc.date.accessioned | 17-Sep-2009 13:50:58 (UTC+8) | - |
dc.date.available | 17-Sep-2009 13:50:58 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 13:50:58 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0927510171 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32613 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 92751017 | zh_TW |
dc.description (描述) | 94 | zh_TW |
dc.description.abstract (摘要) | A mixed hypergraph is a triple H = (X; C;D), where X is the vertex set, and each of C;D is a list of subsets of X. A strict t-coloring is a onto mapping from X to {1, 2,…,t} such that each c belongs to C contains two vertices have a common value and each d belongs to D has two vertices have distinct values. If H has a strict t-coloring, then t belongs to S(H), such S(H) is called the feasible set of H, and k is a gap if there are a value larger than k and a value less than k in the feasible set but k is not.We find the minimum and maximum gap of a mixed hypergraph with more than 5 vertices. Then we consider two special cases of the gap of mixed hypergraphs. First, if the mixed hypergraphs is spanned by a complete bipartite graph, then the gap is decided by the size of bipartition. Second, the (l,m)-uniform mixed hypergraphs has gaps if l > m/2 >2, and we prove that the minimum number of vertices of a (l,m)-uniform mixed hypergraph which has gaps is (m/2)( l -1) + m. | en_US |
dc.description.tableofcontents | Abstract i1 Introduction 12 Maximum gaps of mixed hypergraphs with n vertices 33 Mixed hypergraphs spanned by complete bipartite graphs 84 Gaps of (l,m)-uniform mixed hypergraphs 11References 15 | zh_TW |
dc.format.extent | 44963 bytes | - |
dc.format.extent | 54623 bytes | - |
dc.format.extent | 73827 bytes | - |
dc.format.extent | 43069 bytes | - |
dc.format.extent | 81686 bytes | - |
dc.format.extent | 92910 bytes | - |
dc.format.extent | 91858 bytes | - |
dc.format.extent | 107690 bytes | - |
dc.format.extent | 46024 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0927510171 | en_US |
dc.subject (關鍵詞) | mixed hypergraph | en_US |
dc.subject (關鍵詞) | feasible set | en_US |
dc.subject (關鍵詞) | gap | en_US |
dc.title (題名) | Maximum Gap of Mixed Hypergraph | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] E. Bulgaru and V. Voloshin, Mixed interval hypergraphs, Discrete Applied Math. 77 | zh_TW |
dc.relation.reference (參考文獻) | (1997), 29–41. | zh_TW |
dc.relation.reference (參考文獻) | [2] T. Jiang, D. Mubayi, Z. Tuza, V. Voloshin, and D. West, The chromatic spectrum of | zh_TW |
dc.relation.reference (參考文獻) | mixed hypergraphs, Graphs Combin. 18 (2003), 309–318. | zh_TW |
dc.relation.reference (參考文獻) | [3] D. Kr´al’, J. Kratochv´il, and H. Voss, Mixed hypercacti, Discrete Math. 286 (2004), | zh_TW |
dc.relation.reference (參考文獻) | 99–113. | zh_TW |
dc.relation.reference (參考文獻) | [4] M. Gionfriddo, L. Milazzo, and V. Voloshin, On the upper chromatic index of a | zh_TW |
dc.relation.reference (參考文獻) | multigraph, Computer Science J. Moldova 10 (2002), 81–91. | zh_TW |
dc.relation.reference (參考文獻) | [5] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Comb. | zh_TW |
dc.relation.reference (參考文獻) | 11 (1995), 25–45. | zh_TW |