dc.contributor.advisor | 李蔡彥 | zh_TW |
dc.contributor.advisor | Li,Tsai-Yen | en_US |
dc.contributor.author (作者) | 黃培智 | zh_TW |
dc.contributor.author (作者) | Huang,Pei-Zhi | en_US |
dc.creator (作者) | 黃培智 | zh_TW |
dc.creator (作者) | Huang,Pei-Zhi | en_US |
dc.date (日期) | 2003 | en_US |
dc.date.accessioned | 17-九月-2009 13:53:56 (UTC+8) | - |
dc.date.available | 17-九月-2009 13:53:56 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-九月-2009 13:53:56 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0091753002 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32633 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 91753002 | zh_TW |
dc.description (描述) | 92 | zh_TW |
dc.description.abstract (摘要) | Research on global path planning and navigation strategies for mobile robots has been well studied in the robotics literature. Since the problem can usually be modeled as searching for a collision-free path in a 2D workspace, very efficient and complete algorithms can be employed. However, enabling a humanoid robot to move autonomously in a real-life environment remains a challenging problem. Unlike traditional wheeled robots, legged robots such as humanoid robots have advanced abilities of stepping over an object or striding over a deep gap with versatile locomotions. In this thesis, we propose a motion planning system capable of generating both global and local motions for a humanoid robot in layered environment cluttered with obstacles and deep narrow gaps. The planner can generate a gross motion that takes multiple locomotions, humanoid’s geometric properties and striding ability into consideration. A gross motion plan that satisfies the constraints is generated and further realized by a local planner, which determines the most efficient footsteps and locomotion over uneven terrain. If the local planner fails, the failure is fed back to the global planner to consider other alternative paths. The experiments show that our system can efficiently generate humanoid motions to reach the goal in a real-life environment. The system can also apply to a real humanoid robot to provide a high-level control mechanism. | zh_TW |
dc.description.tableofcontents | 1 Introduction ....................................................................................................11.1 Motivations ..............................................................................................21.2 Autonomous Digital Actor .......................................................................31.3 Realism vs. Interactivity ..........................................................................41.4 Contributions ...........................................................................................51.5 Mathematical Formulation ......................................................................61.6 Organization ............................................................................................72 Related Work ..................................................................................................82.1 Gross Motion Planning ............................................................................92.2 Character Animation ..............................................................................102.3 Two-Level Motion Planning ..................................................................112.3.1 Low DOF Workspace Approach .................................................122.3.2 Randomized Approach ...............................................................133 Problem Description .....................................................................................143.1 Overall Problem Description .................................................................143.2 Virtual Human Modeling ................................................................163.3 Global Motion Planning Problem ..........................................................183.4 Local Motion Planning Problem ............................................................203.5 Replanning Problem ..............................................................................224 Environment Modeling .................................................................................244.1 Binary Bitmap Representation ...............................................................254.2 Height Map Representation ...................................................................264.3 Layered Height Map Representation .....................................................274.4 Merging Sparse Layers Representation .................................................295 Reachability and Collision Modeling ...........................................................335.1 Virtual human’s Kinematic and Geometric Properties ..........................345.2 Locomotion Ability ................................................................................375.2.1 Extend the Reachable Region In Search ....................................395.2.2 Extend the Reachable Region In Preprocessing .........................395.3 Instability ...............................................................................................425.4 Static Collision Detection ......................................................................445.5 Reachability Map with Multiple Locomotion .......................................466 Global Path Searching ..................................................................................516.1 Potential Field ........................................................................................526.2 Path Planning Algorithm .......................................................................546.3 Dynamic Collision Detection ................................................................566.4 Search Criteria .......................................................................................576.5 Post Processing ......................................................................................587 Replanning ....................................................................................................607.1 Fully Reconstruct Approach ..................................................................607.2 Partial Update Approach ........................................................................638 Experimental Results ..............................................................................668.1 Experiments with Different Step Height ...............................................668.2 Experiments with Different Preferences ................................................688.3 Effect of Virtual Human’s Height ..........................................................708.4 Stair-like Terrain Examples ...................................................................728.5 Layered Environment Examples ...........................................................748.6 Replanning Examples ............................................................................748.7 Global Planning with Striding Ability ...................................................778.8 Versatile Locomotion Examples ............................................................799 Conclusions and Future Work ......................................................................839.1 Summary ................................................................................................839.2 Discussion ..............................................................................................84References ..........................................................................................................86 | zh_TW |
dc.format.extent | 43647 bytes | - |
dc.format.extent | 19621 bytes | - |
dc.format.extent | 12475 bytes | - |
dc.format.extent | 12401 bytes | - |
dc.format.extent | 41519 bytes | - |
dc.format.extent | 45285 bytes | - |
dc.format.extent | 352111 bytes | - |
dc.format.extent | 530883 bytes | - |
dc.format.extent | 545470 bytes | - |
dc.format.extent | 192429 bytes | - |
dc.format.extent | 145498 bytes | - |
dc.format.extent | 1571170 bytes | - |
dc.format.extent | 93215 bytes | - |
dc.format.extent | 138297 bytes | - |
dc.format.extent | 41096 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0091753002 | en_US |
dc.subject (關鍵詞) | Motion Planning | en_US |
dc.subject (關鍵詞) | Humanoid | en_US |
dc.subject (關鍵詞) | Animation | en_US |
dc.title (題名) | 自動產生具多樣化運動的虛擬人物動畫 | zh_TW |
dc.title (題名) | Generating Humanoid Animation with Versatile Motions in a Virtual Environment | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] A. Bruderlin and T. W. Calvert, “Goal-Directed, Dynamic Animation of Human Walking,” Proc. of ACM SIGGRAPH, 1989. | zh_TW |
dc.relation.reference (參考文獻) | [2] A. Witkin and Z. Popovic, “Motion Warping,” Computer Graphics Proceedings, SIGGRAPH95, pp.105-108, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [3] D. Sent and M. H. Overmars, “Motion Planning in Environments with Dangerzones,” Proc. of 2001 IEEE Intl. Conf. on Robotics and Automation, pp.1488-1493, May 2001. | zh_TW |
dc.relation.reference (參考文獻) | [4] H. Ko and N.I. Badler, “Animating Human Locomotion with Inverse Dynamics,” IEEE Transaction on Computer Graphics, 16(2), pp.50-59, 1996. | zh_TW |
dc.relation.reference (參考文獻) | [5] H. C. Sun and N. M. Dimitris, “Automating gait generation,” Proc. of ACM SIGGRAPH, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [6] H. Miura and I. Shimoyama, “Dynanic Walk of a Biped,” Intl. J. of Robotics Research, pp.60-74, 1984. | zh_TW |
dc.relation.reference (參考文獻) | [7] J. Barraquand and J. Latombe, “Robot Motion Planning: A Distributed Representation Approach,” Intl J. of Robotics Research, 10:628-649, 1991. | zh_TW |
dc.relation.reference (參考文獻) | [8] J. Barraquand, L. Kavraki, J.C. Latombe, T.Y. Li, and P. Raghavan, “A Random Sampling Scheme for Path Planning,” Intl. J. of Robotics Research, 16(6), pp.759-774, Dec. 1997. | zh_TW |
dc.relation.reference (參考文獻) | [9] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami, “Planning Biped Navigation Strategies in Complex Environments,” Proc. of IEEE Intl. Conf. on Humanoid Robotics, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [10] J.H. Reif, “Complexity of the Mover`s Problem and Generalizations,” Proc. of the 20th IEEE Symp. on Foundations of Computer Science, pp. 421-427, 1979. | zh_TW |
dc.relation.reference (參考文獻) | [11] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion Planning for Humanoid Robots under Obstacle and Dynamic Balance Constraints,” Proc. of IEEE Intl. Conf. on Robotics and Automation, May 2001. | zh_TW |
dc.relation.reference (參考文獻) | [12] J. Kuffner, “Goal-Directed Navigation for Animated Characters Using Real-time Path Planning and Control” Proc. of CAPTECH’98 Workshop on Modeling and Motion capture Techniques for Virtual Environments, Springer-Verlag, 1998. | zh_TW |
dc.relation.reference (參考文獻) | [13] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Footstep Planning Among Obstacles for Biped Robots,” Proc. of 2001 IEEE Intl. Conf. on Intelligent Robots and Systems (IROS 2001), 2001. | zh_TW |
dc.relation.reference (參考文獻) | [14] J. Latombe, Robot Motion Planning, Kluwer, Boston, MA, 1991. | zh_TW |
dc.relation.reference (參考文獻) | [15] J. Pettre, J.-P. Laumond, and T. Simeon, “A 2-Stages Locomotion Planner for Digital Actors,” Proc. of Eurographics/SIGGRAPH Symposium on Computer Animation, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [16] K. Yamane and Y. Nakamura, “Dynamics Filter – Concept and Implementation of On-Line Motion Generator for Human Figures,” Proc. of IEEE Intl. Conf. on Robotics and Automation, pp.688-695, April 2000. | zh_TW |
dc.relation.reference (參考文獻) | [17] L. Kavraki, P.Svestka, J. Latombe, and M. Overmars, “Probabilistic Roadmaps for Fast Path Planning in High-Dimensional Configuration Spaces,” IEEE Trans. on Robotics and Automation, 12:566-580, 1996. | zh_TW |
dc.relation.reference (參考文獻) | [18] M. Kalisiak and M. Panne, “A grasp-based motion planning algorithm for character animation,” J. of Visualization and computer animation, pp.117-129, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [19] M.G. Choi, J. Lee, S.Y. Shin, “Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps,” ACM Transactions on Graphics, Vol. V, pp.1–25, October 2002. | zh_TW |
dc.relation.reference (參考文獻) | [20] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo, “OBPRM: An Obstacle-Based PRM for 3D Workspaces,” Robotics: The Algorithmic Perspective, pp.630-637, 1998. | zh_TW |
dc.relation.reference (參考文獻) | [21] N. Pollard, J. Hodgins, M. Riley, and C. Atkeson, “Adapting Human Motion for the Control of a Humanoid Robot,” Proc. of 2002 IEEE Intl. Conf. on Robotics and Automation, pp.2265-2270, May 2002. | zh_TW |
dc.relation.reference (參考文獻) | [22] P.F. Chen, and T.Y. Li, “Planning Efficient Walking Gaits in Real-Time for Human Characters,” Proc. of 2003 Computer Graphics Workshop, Taiwan, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [23] Q. Huang, K. Kaneko, K. Yokoi, S. Kajita, K. Kotoku, N. Koyachi, H. Arai, N. Imamuna, K. Komoriya, K. Tanie, “Balance Control of a Biped Robot Combining Off-line Pattern with Real-time Modification,” Proc. of IEEE Intl. Conf. on Robotics and Automation, pp.3346-3352, April 2000. | zh_TW |
dc.relation.reference (參考文獻) | [24] R. A. Brooks and T. Lozano-Perez, “A subdivision Algoritm in Computer Space for Find-Path with Rotation,” IEEE Trans. on System. Man, and Cybernetics, vol. 15, pp.224-244, 1985. | zh_TW |
dc.relation.reference (參考文獻) | [25] R.C. Gonzale and R.E. Woods, Digital Image Processing Second Edition, Prentice Hall, 2002. | zh_TW |
dc.relation.reference (參考文獻) | [26] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” Technical Report No. 98-11, Iowa State University, 1998. | zh_TW |
dc.relation.reference (參考文獻) | [27] S.Y. Shin and T. Kunii, “Pseudo Dynamic Keyframe Animation with Motion Blending on the Configuration Space of a Moving Mechanism,” Proc. of Pacific Graphics, August 1995. | zh_TW |
dc.relation.reference (參考文獻) | [28] T.-Y. Li, J.M. Lien, S.Y. Chiu, and T.H. Yu, “Automatically Generating Virtual Guided Tours,” in Proc. of the Computer Animation `99 Conf., pp.99-106, May 1999. | zh_TW |
dc.relation.reference (參考文獻) | [29] T.-Y. Li, and H.-K Ting., “An Intelligent User Interface with Motion Planning for 3D Navigation,” Proc. of the IEEE Virtual Reality 2000 Conf., March 2000. | zh_TW |
dc.relation.reference (參考文獻) | [30] T.Y. Li, M.Y. Liao, and J.F. Liao, “An Extensible Scripting Language for Interactive Animation in a Speech-Enabled Virtual Environment,” Proc. of the IEEE Intl. Conf. on Multimedia and Expo (ICME2004), Taipei, Taiwan, 2004. | zh_TW |
dc.relation.reference (參考文獻) | [31] T.Y. Li, P.F. Chen, and P.Z. Huang, “Motion Planning for Humanoid Walking in a Layered Environment,” in Proc. of the 2003 Int. Conf. on Robotics and Automation, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [32] T.Y. Li and P.Z. Huang, “Motion Planning for a Humanoid Walking in a 3D Space,” Proc. of the 2001 National Computer Symposium, Taipei, Taiwan, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [33] Y.K. Hwang and N. Ahuja, “Gross Motion Planning – a Survey,” ACM Comp. Surveys, 24(3):219-291, 1992. | zh_TW |
dc.relation.reference (參考文獻) | [34] Z. Shiller, K. Yamane, and Y. Nakamura, “Planning Motion Patterns of Human Figures Using a Multi-Layered Grid and the Dynamics Filter” Proc. of IEEE Intl. Conf. on Robotics and Automation, pp.1-8, May 2001. | zh_TW |