dc.contributor.advisor | 張宏慶 | zh_TW |
dc.contributor.advisor | Jang, Hung-Chin | en_US |
dc.contributor.author (作者) | 楊鎮宇 | zh_TW |
dc.contributor.author (作者) | Yang, Chen-Yu | en_US |
dc.creator (作者) | 楊鎮宇 | zh_TW |
dc.creator (作者) | Yang, Chen-Yu | en_US |
dc.date (日期) | 2004 | en_US |
dc.date.accessioned | 17-九月-2009 13:54:17 (UTC+8) | - |
dc.date.available | 17-九月-2009 13:54:17 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-九月-2009 13:54:17 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0091753010 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32636 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 91753010 | zh_TW |
dc.description (描述) | 93 | zh_TW |
dc.description.abstract (摘要) | 未來行動通訊網路之傳輸層將以IP技術為主,各種IP多媒體服務的興起將產生複雜的訊務及動態且多樣化的服務品質(Quality of Service,QoS)需求;加上行動通訊網路具高度不穩定的特性,造成即時服務(real-time service)在IP傳輸層上的效能不彰,無法有效保證一定的服務品質。為有效滿足動態且多樣化的服務品質需求,不只需針對平均頻寬、延遲、抖動和封包丟失率作控制,更需即時的服務品質回饋機制以動態與精確的控制服務品質。本論文提出一回饋型服務品質控制架構與方法,將需要服務品質保證之即時服務的效能轉換為使用者滿意度並即時回饋此滿意度,以動態協商資源並調整到所需之服務品質。如此不僅更能真實反應使用者滿意程度,更能有效提升網路資源的使用。我們選擇UMTS系統,乃因該系統是以IP傳輸介面為傳輸層,並亟需服務品質控制的系統。末了,我們以模擬實驗來驗證本論文之回饋型服務品質控制架構的效能。 | zh_TW |
dc.description.abstract (摘要) | IP technology will be the core technology of transmission layer in the future mobile communication network. The rise of varied IP-based multimedia services will produce complicated traffic and diversified service quality (Quality of Service, QoS) demands. In addition, the wireless mobile communication network is highly error-prone, this will cause real-time services to have poor performance in IP transmission layer, and hard to guarantee services with a certain quality. To meet this, we not only need to control average bandwidth, delay, jitter and packet loss, but also a well-defined prompt feedback mechanism to dynamically and accurately control the service quality. This thesis proposes a feedback-based QoS control framework to convert QoS parameters of real-time services into user`s satisfaction and then feedback this satisfaction immediately. The feedback information is used to dynamically negotiate demanding resource to guarantee a certain service quality. This framework can not only more closely reflect user`s satisfaction, but also enhance the network resource usage more effectively. We choose UMTS as our target system is because its transmission layer is based on IP transmission interface, and it has emergent need to have better QoS control. At the end, we use Network Simulator-2 to verify the proposed framework is more effective. | en_US |
dc.description.tableofcontents | TABLE OF CONTENTS iiiLIST OF FIGURES viiLIST OF TABLES ixCHAPTER 1 INTRODUCTION 11.1 UMTS 11.1.1 3GPP R99 21.1.2 3GPP R4 21.1.3 3GPP R5 31.2 Quality of Service (QoS) 31.3 UMTS QoS 31.3.1 QoS Architecture of UMTS 41.3.2 QoS Management Functions 51.3.2.1 Mapping function 61.3.2.2 Classification function 61.3.2.3 Resource Manager 61.3.2.4 Traffic conditioner 71.3.3 IP-Multimedia Subsystem (IMS) 71.4 Perception of User and QoS Control 7CHAPTER 2 RELATED WORKS 92.1 Service Quality Quantification 92.1.1 Subject Method 92.1.1.1 Mean Opinion Score (MOS) 92.1.2 Object Method 102.1.2.1 Perceptual Evaluation of Speech Quality (PESQ) 102.1.2.2 Peak Signal to Noise Ratio (PSNR) 112.1.2.3 Generation of QoS Quantification 112.2 QoS Feedback 11CHAPTER 3 FEEDBACK-BASED QOS CONTROL FRAMEWORK FOR UMTS 153.1 Integrated Services (IntServ) 153.2 Differentiated Services (DiffServ) 163.2.1 Classification 203.2.2 Marking 203.2.3 Metering 213.2.4 Forwarding 213.2.5 Shaping 213.2.6 Per-Hop Behavior (PHB) 223.3 Connectivity-Service Service Model 233.4 Mathematical Analysis 243.4.1 QoS Feedback Algorithm 263.4.2 QoS Tolerance 303.4.3 QoS Sensitivity 323.4.4 User Perception of Delay 333.4.5 Queuing Model 343.4.5.1 Class-Based Queuing (CBQ) 343.4.5.2 Hierarchical CBQ (HCBQ) 363.4.5.3 Per-Flow Queuing (PFQ) 373.4.5.4 Flow Control 383.4.6 Network Model 423.4.7 QoS Negotiation 443.4.7.1 Part 1: Sender Side Access Network 443.4.7.2 Part 2: Receiver Side Access Network 453.4.7.3 Part 3: Core Network 463.4.7.4 QoS Negotiation Algorithm 473.4.7.5 Part 4: Negotiation Broken 483.5 Enhanced Service Level Agreement (SLA) 483.5.1 Inter-Provider SLA 503.5.2 End User SLA 513.6 Feedback-Based QoS Control Framework 523.6.1 QoS Agent (QA) 533.6.1.1 QoS Monitor (QM) 533.6.1.2 Application Instance Register (AIR) 533.6.2 User Profile Management 543.6.3 SLA Management 543.6.4 Application Management 543.6.5 Application Instance Database (AIDB) 543.6.6 QoS Negotiator 553.6.7 External Info Provider 553.6.8 Network Monitor 553.6.9 Resource Management 553.6.10 Interfaces of Feedback-Based QoS Control 553.6.10.1 QoS Monitor Interface 563.6.10.2 QoS Feedback Interface 573.6.10.3 QoS Control Interface 583.6.10.4 QoS Requirement Interface 593.6.10.5 Network Interface 603.7 Mapping of Feedback-Based QoS control to UMTS 603.7.1 Translation functions (Trans.) 613.7.2 External DB 613.7.3 UMTS BS manager 623.7.4 RAB manager 633.7.5 Gateway UMTS BS manager 633.7.6 Other Lower Layers Manager 633.7.7 Mapping to IP-Multimedia Subsystem (IMS) 64CHAPTER 4 SIMULATION AND RESULTS ANALYSIS 674.1 Introduction to NS-2 674.2 Enhanced UMTS Radio Access Network Extensions (EURANE) 674.3 Simulation Scenario 684.3.1 Topology 684.3.2 Error Model 694.3.3 Application 704.3.3.1 Video Application 714.3.3.2 Traffic Model 714.4 Result Analysis 724.4.1 Throughput 724.4.2 Stability 724.4.2.1 Coefficient of Variation (CV) 734.4.2.2 CV to Frame Number 734.4.3 Robustness 744.4.4 Simulation and analysis 744.4.4.1 Simulation 1: Video flow without feedback-based QoS control 744.4.4.2 Simulation 2: Video flows with feedback-based QoS control 764.4.4.3 Simulation 3: Different QoS Sensitivity 794.4.4.4 Simulation 4: Robustness analysis without QoS feedback control 804.4.4.5 Simulation 5: Robustness Analysis with Feedback-Based QoS Control 84CHAPTER 5 CONCLUSION AND FUTURE WORK 895.1 Conclusion 895.2 Future Work 89REFERENCE 91 | zh_TW |
dc.format.extent | 44759 bytes | - |
dc.format.extent | 62884 bytes | - |
dc.format.extent | 61757 bytes | - |
dc.format.extent | 125659 bytes | - |
dc.format.extent | 64659 bytes | - |
dc.format.extent | 270334 bytes | - |
dc.format.extent | 174565 bytes | - |
dc.format.extent | 14753 bytes | - |
dc.format.extent | 54230 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0091753010 | en_US |
dc.subject (關鍵詞) | 服務品質 | zh_TW |
dc.subject (關鍵詞) | 第三代行動通訊 | zh_TW |
dc.subject (關鍵詞) | 回饋 | zh_TW |
dc.subject (關鍵詞) | QoS | en_US |
dc.subject (關鍵詞) | UMTS | en_US |
dc.subject (關鍵詞) | feedback | en_US |
dc.title (題名) | Feedback-Based QoS Control Framework for UMTS | zh_TW |
dc.title (題名) | 適用於UMTS系統之以回饋為基礎的服務品質控制架構 | zh_TW |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 【1】 Giuseppe Araniti, Pasquale De Meo and Domenico Ursino. December 2003. Adaptively Controlling the QoS of Multimedia Wireless Applications Through “User Profiling” Techniques. IEEE Journal on selected areas in communications, vol. 21, NO.10. | zh_TW |
dc.relation.reference (參考文獻) | 【2】 Alfred Kobsa. 2001. Generic User Modeling Systems. Kluwer Academic Publishers. | zh_TW |
dc.relation.reference (參考文獻) | 【3】 April 1 2004. End-to-end Quality of Service (QoS) concept and architecture (3GPP TS 23.207 version 5.9.0). The 3rd Generation Partnership Project (3GPP) | zh_TW |
dc.relation.reference (參考文獻) | 【4】 Huan-Yun Wei, Ying-Dar Lin. Fourth Quarter 2003. A Survey And Measurement-Based Comparison Of Bandwidth Management Techniques. IEEE Communications Surveys & Tutorials, vol. 5, no. 2 | zh_TW |
dc.relation.reference (參考文獻) | 【5】 Adrian E. Conway. March 2004. Output-Based Method of Applying PESQ to Measure the Perceptual Quality of Framed Speech Signals. IEEE Wireless Communications and Networking Conference, vol. 5, no. 1. | zh_TW |
dc.relation.reference (參考文獻) | 【6】 January 2005. The Third Generation Partnership Project (3GPP) TS 23107.620. | zh_TW |
dc.relation.reference (參考文獻) | 【7】 M. Mouly, and M.B. Pautet. 1992. The GSM System for Mobile Communications. Telecom Publishing. | zh_TW |
dc.relation.reference (參考文獻) | 【8】 Sally Floyd, Van Jacobson. Link-sharing and Resource Management Models for Packet Networks. August 1995. IEEE/ACM Transactions on Networking Vol. 3. No.4. | zh_TW |
dc.relation.reference (參考文獻) | 【9】 Zizhi Qiao, Lingfen Sun, Nicolai Heilemann and Emmanuel Ifeachor. A new method for VoIP Quality of Service control use combined adaptive sender rate and priority marking. June 2004. ICC2004-IEEE International Conference on Communications Vol. 27, no. 1. | zh_TW |
dc.relation.reference (參考文獻) | 【10】 Fei Yu, Vincent W. S. Wong, Victor C. M. Leung. A new QoS Provisioning Method for Adaptive Multimedia in Cellular Wireless Networks. March 2004. IEEE INFOCOM 2004 – The Conference on Computer Communications, vol. 23, no. 1. | zh_TW |
dc.relation.reference (參考文獻) | 【11】 Algimantas Kajackas, Vaidas Batkauskas, Arturas Medeisis. Individual QoS Rating for Voice Services in Cellular Networks. Jun 2004. IEEE Communications Magazine, vol. 42, no. 6. | zh_TW |
dc.relation.reference (參考文獻) | 【12】 Yoshihiro Ito, Shuji Tasaka, Yoshihiko Fukuta. Psychometric Analysis of The Effect of End-to-End Delay on User-level QoS in Live Audio-Video transmission. June 2004. ICC 2004 – IEEE International Conference on Communications, vol. 27, no. 1. | zh_TW |
dc.relation.reference (參考文獻) | 【13】 B. Simmons, H. Lutfiyya. Using Application Feedback in Differentiated Services and Policies. Jun 2004. IEEE Communications Magazine, Vol. 42, no. 6. | zh_TW |
dc.relation.reference (參考文獻) | 【14】 J. Heinanen, F. Baker, W. Weiss, J. Wroclawski. Requests for Comments (RFC) 2597 Assured Forwarding PHB Group. June 1999. The Internet Engineering Task Force (IETF) | zh_TW |
dc.relation.reference (參考文獻) | 【15】 V. Jacobson, K. Nichols, K. Poduri. Requests for Comments (RFC) 2598 An Expedited Forwarding PHB. June 1999. The Internet Engineering Task Force (IETF) | zh_TW |
dc.relation.reference (參考文獻) | 【16】 Vihoy Pandey, Dipak Ghosal, Biswanath Mukherjee. Exploiting User Profiles to Support Differentiated Services in Next-Generation Wireless Networks. October 2004. IEEE Network. | zh_TW |
dc.relation.reference (參考文獻) | 【17】 Communication Quality of Service: A framework and Definitions. November 2001. ITU-T recommendation G.1000. | zh_TW |
dc.relation.reference (參考文獻) | 【18】 S.Van den Bosch, G..Karagiannis, A.McDonald. NSLP for Quality of Service Signaling. August 2005. The Internet Engineering Task Force (IETF). | zh_TW |
dc.relation.reference (參考文獻) | 【19】 K. Isoyama, H. Saito, Y. Nagao, M. Yoshida. A proposal of QoS Control Architecture and Resource Assignment Scheme. April 2002. Network Operations and Management Symposium IEEE. | zh_TW |
dc.relation.reference (參考文獻) | 【20】 Milla Poikselka, Georg Mayer, Hisham Khartabil, Aki Niemi. The IMS: IP Multimedia Concepts and Services in the Mobile Domain. April 2004. John Wiley & Sons, Ltd. | zh_TW |
dc.relation.reference (參考文獻) | 【21】 Ben Abda Moncef, Kroener Thomas, Kandil Mohammad, Salih Ahmed. MPEG-4 and H.263 Video Traces for Network Performance Evaluation. http://www.tkn.tu-berlin.de/research/trace/trace.html | zh_TW |