dc.contributor.advisor | 劉昭麟 | zh_TW |
dc.contributor.advisor | Liu , Chao-Lin | en_US |
dc.contributor.author (作者) | 王俊弘 | zh_TW |
dc.contributor.author (作者) | Wang , Chun-Hung | en_US |
dc.creator (作者) | 王俊弘 | zh_TW |
dc.creator (作者) | Wang , Chun-Hung | en_US |
dc.date (日期) | 2003 | en_US |
dc.date.accessioned | 17-九月-2009 13:54:53 (UTC+8) | - |
dc.date.available | 17-九月-2009 13:54:53 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-九月-2009 13:54:53 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0091753024 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32641 | - |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 91753024 | zh_TW |
dc.description (描述) | 92 | zh_TW |
dc.description.abstract (摘要) | 多選題測驗試題已證明能有效地評估學生的學習成效,然而,以人為方式建立題庫是一件耗時費力的工作。藉由電腦高速運算的能力,電腦輔助產生試題系統能有效率地建置大規模的題庫,同時減少人為的干預而得以保持試題的隱密性。受惠於網路上充裕的文字資源,本研究發展一套克漏詞試題出題系統,利用既有的語料自動產生涵蓋各種不同主題的克漏詞試題。藉由分析歷屆大學入學考試的資料,系統可產生類似難度的模擬試題,並且得到出題人員在遴選測驗標的方面的規律性。在產生試題的過程中導入詞義辨析的演算法,利用詞典與selectional preference模型的輔助,分析句子中特定詞彙的語義,以擷取包含測驗編撰者所要測驗的詞義的句子,並以collocation為基礎的方法篩選誘答選項。實驗結果顯示系統可在每產生1.6道試題中,得到1道可用的試題。我們嘗試產生不同類型的試題,並將這套系統融入網路線上英文測驗的環境中,依學生的作答情形分析試題的鑑別度。 | zh_TW |
dc.description.abstract (摘要) | Multiple-choice tests have proved to be an efficient tool for measuring students’ achievement. Manually constructing tests items, however, is a time- consuming and labor-intensive task. Harnessing the computing power of computers, computer-assisted item generation offers the possibility of creating large amount of items, thereby alleviating the problem of keeping the items secure. With the abundant text resource on the Web, this study develops a system capable of generating cloze items that cover a wide range of topics based on existing corpra. By analyzing training data from the College Entrance Examinations in Taiwan, we identify special regularities of the test items, and our system can generate items of similar style based on results of the analysis. We propose a word sense disambiguation-based method for locating sentences in which designated words carry specific senses, and apply collocation-based methods for selecting distractors. Experimental results indicate that our system was able to produce a usable item for every 1.6 items it returned. We try to create different types of items and integrate the reported item generator in a Web-based system for learning English. The outcome of on-line examinations is analyzed in order to estimate the item discrimination of the test items generated by our system. | en_US |
dc.description.tableofcontents | 第一章 緒論 1第二章 文獻回顧與探討 7第三章 語料來源與詞典 15第四章 歸納克漏詞試題的特徵 22第五章 產生克漏詞試題 29第六章 評估與應用 42第七章 結論 53參考文獻 55 | zh_TW |
dc.format.extent | 255952 bytes | - |
dc.format.extent | 256766 bytes | - |
dc.format.extent | 258879 bytes | - |
dc.format.extent | 289314 bytes | - |
dc.format.extent | 328571 bytes | - |
dc.format.extent | 365549 bytes | - |
dc.format.extent | 374292 bytes | - |
dc.format.extent | 360576 bytes | - |
dc.format.extent | 463046 bytes | - |
dc.format.extent | 1273110 bytes | - |
dc.format.extent | 281776 bytes | - |
dc.format.extent | 312882 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0091753024 | en_US |
dc.subject (關鍵詞) | 電腦輔助語言學習 | zh_TW |
dc.subject (關鍵詞) | 自動產生試題 | zh_TW |
dc.subject (關鍵詞) | 試題編寫工具 | zh_TW |
dc.subject (關鍵詞) | 詞義辨析 | zh_TW |
dc.subject (關鍵詞) | 自然語言處理 | zh_TW |
dc.subject (關鍵詞) | Computer-Assisted Language Learning | en_US |
dc.subject (關鍵詞) | Automatic Item Generation | en_US |
dc.subject (關鍵詞) | Authoring Tools | en_US |
dc.subject (關鍵詞) | Word Sense Disambiguation | en_US |
dc.subject (關鍵詞) | Natural Language Processing | en_US |
dc.title (題名) | 電腦輔助克漏詞多選題出題系統之研究 | zh_TW |
dc.title (題名) | A Study on Computer Aided Generation of Multiple-Choice Cloze Items | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] 郭生玉,心理與教育測驗,台北:精華書局,1989。 | zh_TW |
dc.relation.reference (參考文獻) | [2] 鄭恆雄,陳凌霞,宋麗梅等,八十七年度英文命題實驗計畫研究報告,台北:大學入學考試中心,1999。 | zh_TW |
dc.relation.reference (參考文獻) | [3] Berger, A. L., Della Pietra, S. A. & Della Pietra, V. J. (1996). A maximum entropy approach to natural language processing. Computational Linguistics, 22 (1), 39–71. | zh_TW |
dc.relation.reference (參考文獻) | [4] Coniam, D. (1997). A preliminary inquiry into using corpus word frequency data in the automatic generation of English language cloze tests. Computer Assisted Language Instruction Consortium, 16 (2–4), 15–33. | zh_TW |
dc.relation.reference (參考文獻) | [5] Deane, P. & Sheehan, K. (2003). Automatic item generation via frame semantics. Education Testing Service: http://www.ets.org/research/dload/ncme03-deane.pdf . | zh_TW |
dc.relation.reference (參考文獻) | [6] Dennis, I., Handley, S., Bradon, P., Evans, J. & Nestead, S. (2002). Approaches to modeling item-generative tests. In: Item Generation for Test Development [12], 53–72. | zh_TW |
dc.relation.reference (參考文獻) | [7] Dorr, B. J., Levow, G.-A. & Lin, D. (2000). Large-scale construction of a Chinese- English semantic hierarchy. Technical report, University of Maryland, College Park, MD. | zh_TW |
dc.relation.reference (參考文獻) | [8] Fillmore, C. J. & Atkins, B.T. (1992). Towards a frame based lexicon: the semantics of RISK and its neighbors. Frames, Fields and Constraints (Lawrence Erlbaum Associates), 75–102. | zh_TW |
dc.relation.reference (參考文獻) | [9] Florian, R. & Wicentowski, R. (2002). Unsupervised Italian word sense disambiguation using WordNets and unlabeled corpora. Proceedings of the SIGLEX/SENSEVAL Workshop on Word Sense Disambiguation: Recent Success and Future Directions, 67–73. | zh_TW |
dc.relation.reference (參考文獻) | [10] Gao, Z.-M. & Liu, C.-L. (2004). A Web-based assessment and profiling system for college English. Proceedings of the Eleventh International Conference on Computer Assisted Instruction, CD–ROM. | zh_TW |
dc.relation.reference (參考文獻) | [11] Huang, S.-M., Liu, C.-L. & Gao, Z.-M. (2003). Toward computer assisted learning for English dictation. Proceedings of the 2003 Joint Conference on Artificial Intelligence, Fuzzy Systems, and Grey Systems, CD–ROM. | zh_TW |
dc.relation.reference (參考文獻) | [12] Irvine, S. H. & Kyllonen, P. C. (2002). Item Generation for Test Development (Lawrence Erlbaum Associates). | zh_TW |
dc.relation.reference (參考文獻) | [13] Johns, T. http://web.bham.ac.uk/johnstf/timcall.htm. | zh_TW |
dc.relation.reference (參考文獻) | [14] Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. Proceedings of the Special Group for Design of Communications Conference, 24–26. | zh_TW |
dc.relation.reference (參考文獻) | [15] Lin, D. (1998). Dependency-based evaluation of MINIPAR. Proceedings of the Workshop on the Evaluation of Parsing Systems in the First International Conference on Language Resources and Evaluation. | zh_TW |
dc.relation.reference (參考文獻) | [16] Liu, C.-L. (2004). Using mutual information for adaptive student assessments. Proceedings of the Fourth IEEE International Conference on Advanced Learning Technologies, to appear. | zh_TW |
dc.relation.reference (參考文獻) | [17] Madsen, H. (1983). Techniques in Testing (Oxford University Press). | zh_TW |
dc.relation.reference (參考文獻) | [18] Manning, C. D. & Schütze, H. (1999). Foundations of statistical natural language processing (MIT Press). | zh_TW |
dc.relation.reference (參考文獻) | [19] Marcus, M. P., Santorini, B. & Marcinkiewicz, M. A. (1993). Building a large annotated corpus of English: the Penn Treebank. Computational Linguistics, 19 (2), 313–330. | zh_TW |
dc.relation.reference (參考文獻) | [20] Martin, B. & Mitrovic A. (2002). Automatic problem generation in constraint-based tutors. Proceedings of the Conference on Intelligent Tutoring System, 388–398. | zh_TW |
dc.relation.reference (參考文獻) | [21] Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38 (11), 39–41. | zh_TW |
dc.relation.reference (參考文獻) | [22] Mitkov, R. & Ha, L. A. (2003). Computer-aided generation of multiple-choice tests. Proceedings of the HLT-NAACL 2003 Workshop on Building Educational Applications Using Natural Language Processing, 17–22. | zh_TW |
dc.relation.reference (參考文獻) | [23] Ohlsson, S. (1991). Constraint-based student modeling. Proceedings of the NATO Advanced Research Workshop on Student Modeling, 167–189. | zh_TW |
dc.relation.reference (參考文獻) | [24] Oranje, A. (2003). Automatic item generation applied to the national assessment of educational progress: Exploring a multilevel structural equation model for categorized variables. Education Testing Service: http://www.ets.org/research/dload/ncme03-andreas.pdf. | zh_TW |
dc.relation.reference (參考文獻) | [25] Poel, C. J. & Weatherly, S. D. (1997). A cloze look at placement testing. Shiken: JALT (Japanese Assoc. for Language Teaching) Testing & Evaluation SIG Newsletter, 1 (1), 4–10. | zh_TW |
dc.relation.reference (參考文獻) | [26] Ratnaparkhi, A. (1996). A maximum entropy part-of-speech tagger. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 133–142. | zh_TW |
dc.relation.reference (參考文獻) | [27] Resnik, P. (1997). Selectional preference and sense disambiguation. Proceedings of the Applied Natural Language Processing Workshop on Tagging Text with Lexical Semantics: Why, What and How, 52–57. | zh_TW |
dc.relation.reference (參考文獻) | [28] Reynar, J. C. & Ratnaparkhi, A. (1997). A maximum entropy approach to identifying sentence boundaries. Proceedings of the Conference on Applied Natural Language Processing, 16–19. | zh_TW |
dc.relation.reference (參考文獻) | [29] Sheehan, K. M., Deane, P. & Kostin, I. (2003). A partially automated system for generating passage-based multiple-choice verbal reasoning items. Paper presented at the National Council on Measurement in Education Annual Meeting. | zh_TW |
dc.relation.reference (參考文獻) | [30] Steven, V. (1991). Classroom concordancing: vocabulary materials derived from relevant authentic text. English for Specific Purposes, 10 (1), 35–46. | zh_TW |
dc.relation.reference (參考文獻) | [31] Wang, C.-H., Liu, C.-L. & Gao, Z.-M. (2003). Toward computer assisted item generation for English vocabulary tests. Proceedings of the 2003 Joint Conference on Artificial Intelligence, Fuzzy Systems, and Grey Systems, CD–ROM. | zh_TW |
dc.relation.reference (參考文獻) | [32] Wilks, Y. & Stevenson, M. (1997). Combining independent knowledge sources for word sense disambiguation. Proceedings of the Conference on Recent Advances in Natural Language Processing, 1–7. | zh_TW |
dc.relation.reference (參考文獻) | [33] Wilson, E. (1997). The automatic generation of CALL exercises from general corpora. Proceedings of the Conference on Teaching and Language corpora, 116–130. | zh_TW |
dc.relation.reference (參考文獻) | [34] Yang, X.-F. & Li, T.-Q. (2002). A study of semantic disambiguation based on HowNet. Computational Linguistics and Chinese Language Processing, 7 (1), 47–78. | zh_TW |
dc.relation.reference (參考文獻) | [35] Yarowsky, D. (1992). Word-sense disambiguation using statistical models of Roget`s categories trained on large corpora. Proceedings of COLING-92, 454–460. | zh_TW |