dc.contributor.advisor | 劉昭麟 | zh_TW |
dc.contributor.advisor | Liu, Chao-Lin | en_US |
dc.contributor.author (作者) | 黃珮雯 | zh_TW |
dc.contributor.author (作者) | Huang, Pei-Wen | en_US |
dc.creator (作者) | 黃珮雯 | zh_TW |
dc.creator (作者) | Huang, Pei-Wen | en_US |
dc.date (日期) | 2005 | en_US |
dc.date.accessioned | 17-九月-2009 13:57:07 (UTC+8) | - |
dc.date.available | 17-九月-2009 13:57:07 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-九月-2009 13:57:07 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0093753013 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32653 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 93753013 | zh_TW |
dc.description (描述) | 94 | zh_TW |
dc.description.abstract (摘要) | 過去已有許多技術應用來建立預測財務危機的模型,如統計學的多變量分析或是類神經網路等分類技術。這些早期預測財務危機的模型大多以財務比率作為變數。然而歷經安隆(Enron)、世界通訊(WorldCom)等世紀騙局,顯示財務數字計算而成的財務比率有其天生的限制,無法在公司管理階層蓄意虛增盈餘時,及時給予警訊。因此,本論文初步探勘共同比分析、公司治理及傳統的Altman財務比率等研究方法,試圖突破財務比率在財務危機預測問題的限制,選出可能提高財務危機預測的特徵群。接著,我們進一步應用基因演算法篩選質性與非質性的特徵,期望藉由基因演算法裡子代獲得親代間最優基因的交配過程,可以讓子代的適應值最大化,找出最佳組合的特徵群,然後以此特徵群訓練支持向量機預測模型,以提高財務預測效果並降低公眾的損失。實驗結果顯示,共同比分析與公司治理等相關特徵確實能提升預測財務危機模型的預測效果,我們應當用基因演算法嘗試更多質性與非質性的特徵組合,及早預警財務危機公司以降低社會成本。 | zh_TW |
dc.description.tableofcontents | 第一章 概論 11.1 研究背景與動機 11.2 研究方法 11.3 研究成果 21.4 論文架構 3第二章 文獻回顧 42.1 會計相關文獻 42.1.1 財務比率分析(Financial Ratio Analysis) 42.1.2 共同比分析(Common-Size Analysis) 62.1.3 公司治理(Corporate Governance) 82.2 資訊科學相關文獻 102.2.1 倒傳遞網路(Backpropagation Networks) 102.2.2 決策樹(Decision Trees) 102.2.3 基因演算法(Genetic Algorithms) 112.2.4 支持向量機(Support Vector Machines) 12第三章 研究方法 15第四章 財務比率、共同比分析和公司治理的特徵群 174.1 特徵群 174.2 分類器與衡量標準 204.2.1 分類器 204.2.2 衡量標準 204.3 以單季財報為資料單位之實驗 214.3.1 資料來源與應用 214.3.2 實驗結果與討論 254.4 以雙季財報為資料單位之實驗 294.4.1 資料來源與應用 294.4.2 實驗結果與討論 314.5 小結 34第五章 基因演算法與支持向量機的計算模型 355.1 混合指標特徵群 355.2 實驗設計 355.2.1 資料來源與應用 365.2.2 特徵挑選與預測 385.2.3 衡量標準 425.3 實驗結果與討論 425.3.1 三組基因演算法及增益比值法的實驗結果 435.3.2 綜合比較三組基因演算法的實驗結果 465.4 分析基因演算法實驗的共同特徵 485.5 小結 55第六章 比較其他方法與本論文的計算模型 566.1 比較C4.5決策樹與本論文的計算模型 566.1.1 實驗設計 576.1.2 實驗結果與討論 576.2 過去相關研究的準確率 606.3 小結 61第七章 結論 62參考文獻 65 | zh_TW |
dc.format.extent | 48123 bytes | - |
dc.format.extent | 68422 bytes | - |
dc.format.extent | 84960 bytes | - |
dc.format.extent | 70468 bytes | - |
dc.format.extent | 101413 bytes | - |
dc.format.extent | 185287 bytes | - |
dc.format.extent | 86845 bytes | - |
dc.format.extent | 264167 bytes | - |
dc.format.extent | 295739 bytes | - |
dc.format.extent | 134908 bytes | - |
dc.format.extent | 100703 bytes | - |
dc.format.extent | 58903 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0093753013 | en_US |
dc.subject (關鍵詞) | 財務危機預測 | zh_TW |
dc.subject (關鍵詞) | 共同比分析 | zh_TW |
dc.subject (關鍵詞) | 公司治理 | zh_TW |
dc.subject (關鍵詞) | 基因演算法 | zh_TW |
dc.subject (關鍵詞) | 支持向量機 | zh_TW |
dc.subject (關鍵詞) | Financial Distress Prediction | en_US |
dc.subject (關鍵詞) | Common-Size Analysis | en_US |
dc.subject (關鍵詞) | Corporate Governance | en_US |
dc.subject (關鍵詞) | Genetic Algorithms | en_US |
dc.subject (關鍵詞) | Support Vector Machines | en_US |
dc.title (題名) | 以財務比率、共同比分析和公司治理指標預測 上市公司財務危機之基因演算法與支持向量機的計算模型 | zh_TW |
dc.title (題名) | Applying Genetic Algorithms and Support Vector Machines for Predicting Financial Distresses with Financial Ratios and Features for Common-Size Analysis and Corporate Governance | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 1 T. Abdelwahed and E. M. Amir. New evolutionary bankruptcy forecasting model based on genetic algorithms and neural networks. Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence, pp. 241-245, 2005. | zh_TW |
dc.relation.reference (參考文獻) | 2 E. I. Altman. Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy. Journal of Finance, Vol. 23, pp. 589-609, 1968. | zh_TW |
dc.relation.reference (參考文獻) | 3 E. I. Altman , R. Haldeman and P. Narayanan. Zeta analysis: a new model to identify bankruptcy risk of corporations, Journal of Banking and Finance, Vol. 1, pp. 29-54, 1977. | zh_TW |
dc.relation.reference (參考文獻) | 4 C. C. Chang and C. J. Lin. LIBSVM: A library for support vector machines, 2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm | zh_TW |
dc.relation.reference (參考文獻) | 5 J. R. Coakley and C. E. Brown. Artificial neural networks in accounting and finance: modeling issues. International Journal of Intelligent Systems in Accounting, Finance & Management, Vol. 9, pp. 119-144, 2000. | zh_TW |
dc.relation.reference (參考文獻) | 6 A. Fan and M. Palaniswami. Selecting bankruptcy predictors using a support vector machine approach. Proceedings of the International Joint Conference on Neural Networks, Vol. 6, pp. 354-359, 2000. | zh_TW |
dc.relation.reference (參考文獻) | 7 K. Fanning, K. Cogger, and R. Srivastava. Detection of management fraud: A neural network approach. International Journal of Intelligent Systems in Accounting, Finance & Management, Vol. 4, pp. 113-26, 1995. | zh_TW |
dc.relation.reference (參考文獻) | 8 J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA, 1992. | zh_TW |
dc.relation.reference (參考文獻) | 9 P.-W. Huang and C.-L. Liu. Exploiting corporate governance and common-size analysis for financial distress detecting models. Proceedings of the 5th International Conference on Computational Intelligence in Economics and Finance, to appear, 2006. | zh_TW |
dc.relation.reference (參考文獻) | 10 S. Johnson, P. Boone, A. Breach, and E. Friedman. Corporate governance in the Asian financial crisis. Journal of Financial Economics, Vol. 58, pp. 141-186, 2000. | zh_TW |
dc.relation.reference (參考文獻) | 11 R. La Porta, F. Lopez-de-Silanes, A. Shleifer, and R. Vishny. Agency problems and dividend policies around the world. Journal of Finance, Vol. 55, pp. 1-33, 2000. | zh_TW |
dc.relation.reference (參考文獻) | 12 T. S. Lee and Y. H. Yeh. Corporate governance and financial distress: evidence from Taiwan. Corporate Governance, Vol. 12, pp. 378-388, 2004. | zh_TW |
dc.relation.reference (參考文獻) | 13 M. L. Nasir, R. I. John, S. C. Bennett, D. M. Russell, and A. Patel. Predicting corporate bankruptcy using artificial neural networks. Journal of Applied Accounting Research, Vol. 5, pp. 30-52, 2000. | zh_TW |
dc.relation.reference (參考文獻) | 14 M. D. Odom and R. Sharda. A neural network model for bankruptcy prediction. International Joint Conference on Neural Networks. Vol. 2, pp. 163-168, 1990. | zh_TW |
dc.relation.reference (參考文獻) | 15 D. E. O’Leary. Using neural networks to predict corporate failure. International Journal of Intelligent Systems in Accounting, Finance & Management, Vol. 7, pp. 187-197, 1998. | zh_TW |
dc.relation.reference (參考文獻) | 16 Z. Pawlak. Rough sets. International Journal of Parallel Programming, Vol. 11, pp. 341-356, 1982. | zh_TW |
dc.relation.reference (參考文獻) | 17 J. R. Quinlan. Introduction of decision trees. Machine Learning, Vol. 1, No. 1, pp. 81-106, 1986. | zh_TW |
dc.relation.reference (參考文獻) | 18 J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993. | zh_TW |
dc.relation.reference (參考文獻) | 19 Van Rijsbergen. Information Retrieval, 2nd Edition, Butterworth-Heinemann Newton, 1979. | zh_TW |
dc.relation.reference (參考文獻) | 20 S. Salcedo-Sanz, M. Deprado-Cumplido, and M. J. Segovia-Vargas. Feature selection methods involving support vector machines for prediction of insolvency in non-life insurance companies. International Journal of Intelligent Systems in Accounting, Finance & Management, Vol. 12, pp. 261-281, 2004. | zh_TW |
dc.relation.reference (參考文獻) | 21 H. Schilit. Financial shenanigans: how to detect accounting gimmicks & fraud in financial reports. New York: McGraw-Hill, 2002. | zh_TW |
dc.relation.reference (參考文獻) | 22 K. S. Shin, T. S. Lee, and H. J. Kim. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, Vol. 28, pp. 127-135, 2005. | zh_TW |
dc.relation.reference (參考文獻) | 23 K. S. Shin and Y. J. Lee. A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, Vol. 23, pp. 321-328, 2002. | zh_TW |
dc.relation.reference (參考文獻) | 24 I. H. Witten and E. Frank. Data mining: practical machine learning tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 2005. | zh_TW |
dc.relation.reference (參考文獻) | 25 Y. H. Yeh, T. S. Lee and T. Woidtke. Family control and corporate governance: evidence for Taiwan. International Review of Finance, Vol. 2, pp. 21-48, 2001. | zh_TW |
dc.relation.reference (參考文獻) | 26 MATLAB: http://www.mathwork.com | zh_TW |
dc.relation.reference (參考文獻) | 27 TEJ: http://www.tej.com.tw | zh_TW |
dc.relation.reference (參考文獻) | 28 葉銀華、李存修與柯承恩,「公司治理與評等系統」,初刷,商智文化,台灣,民國91年10月 | zh_TW |
dc.relation.reference (參考文獻) | 29 湯玲郎與施並洲,「灰關聯分析、類神經網路、案例推理法於財務危機預警模式之應用研究」,中華管理評論,第四卷,第二號,頁25-37,民國90年3月 | zh_TW |