學術產出-學位論文

題名 態度量表中檢定組間差異之統計方法
作者 林昱君
貢獻者 江振東
林昱君
關鍵詞 態度量表
李克特
變異數分析
Q統計量
Attitude measurement
Likert
ANOVA
Q statistic
日期 2003
上傳時間 17-九月-2009 18:45:39 (UTC+8)
摘要 當研究者想要了解態度量表中不同組間之態度分數是否有所差異時,一個常見的分析方法為變異數分析。然而,變異數分析需要建立在資料服從常態分配之假設上,態度量表之資料類型卻很明顯地不符合此一假設。而非針對連續型資料所推導出來的 統計量,應該是較適合處理序列或是等距尺度等非常態資料之檢定方法。本研究主要之目的即為探討利用 統計量以及利用變異數分析兩者所作出之檢定結果差異為何。過去相關研究皆假設態度量表背後存在一連續潛在變數,本研究則直接由間斷型分配出發。在公式推導上,我們發現 統計量與變異數分析中之 統計量存在一對一對應之關係。雖然兩統計量近似之分配不同,但兩統計量所對應之p值卻始終非常接近。若以0.05為顯著水準, 統計量與 統計量之檢定結果幾乎完全相同。當需要檢定不同組間在多題上之看法是否具有差異時,我們比較了將屬於同一主題之各題分數加總,然後依照單變量變異數分析之方法進行檢定,以及多變量變異數分析法、羅吉斯迴歸分析法等三種方法。根據我們的模擬結果,若各組在各題之態度皆很類似,則利用ANOVA進行分析可以得到較低的型一誤差;若各組在各題之態度不太一致,且有左右偏分配互相抵銷的情形,則利用MANOVA或是羅吉斯迴歸分析法才能夠維持住很高的檢定力。
In social science literature, we frequently found that ANOVA techniques were utilized to analyze Likert-type response data. However, one of the three basic assumptions behind ANOVA is that response variable is normally distributed, and Likert-type data apparently do not share this property. In this study, we compare the performance between statistic associated with ANOVA with Mantel- Haenszel statistic, a statistic aimed at handling categorical data. We found that statistic and statistic have one-to-one relationship. Although these two statistics can be approximated by distribution and Chi-square distribution respectively, their p values are quite close to each other. At the significant level of 0.05, and statistics almost have the same testing results. In addition to analyzing a single Likert-type response question, we would also like to analyze a set of Likert-type response questions that probably represent a specific concept. We propose two alternatives here. The first one is MANOVA, and the second one is logistic regression analysis. According to the simulation results, using the ANOVA approach is slightly better in terms of the type I error rate if the responses have similar structures among questions. On the other hand, using MANOVA or logistic regression analysis would maintain higher power whenever the responses have different structures among questions.
參考文獻 1. Box, G. E. P., Hunter, W. G., and Hunter J. S. (1978). Statistics for Experimenters. Wiley, New York.
2. Cochran, W. (1954). Some Methods of Strengthening the Common Test. Biometrics, 10, 417-451.
3. Fisher, R. A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7 (part 2), 179-188.
4. Gregoire, T. G., and Driver, B. L. (1987). Analysis of ordinal data to detect population differences. Psychological Bulletin, 101, 159-165.
5. Kim, D., and Agresti, A. (1997). Nearly exact tests of conditional independence and marginal homogeneity for sparse contingency tables. Computational Statistics & Data Analysis, 24, 89-104.
6. Koch, G. G. (1969). A Useful Lemma for Proving the Equality of Two Matrices with Applications to Least Squares Type Quadratic Forms. Journal of the American Statistical Association, 64, 969-970.
7. Koch, G. G., and Bhapkar, V. P. (1982). Chi-square tests. Encyclopedia of Statistical Sciences, N. L. Johnson and S. Kotz (eds), 442-457. Wiley, New York.
8. Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology, New York.
9. Mantel, N., and Haenszel, W. (1959). Statistical Aspects of the Analysis of Data From Retrospective Studies of Disease. Journal of the National Cancer Institute, 22, 719-748.
10. Press, S. J., and Wilson, S. (1978). Choosing Between Logistic Regression and Discriminant Analysis. Journal of the American Statistical Association, 73, 699-705.
11. Somes, G. W. (1986). The Generalized Mantel-Haenszel Statistic. The American Statistician, 40, 106-108.
描述 碩士
國立政治大學
統計研究所
91354002
92
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0091354002
資料類型 thesis
dc.contributor.advisor 江振東zh_TW
dc.contributor.author (作者) 林昱君zh_TW
dc.creator (作者) 林昱君zh_TW
dc.date (日期) 2003en_US
dc.date.accessioned 17-九月-2009 18:45:39 (UTC+8)-
dc.date.available 17-九月-2009 18:45:39 (UTC+8)-
dc.date.issued (上傳時間) 17-九月-2009 18:45:39 (UTC+8)-
dc.identifier (其他 識別碼) G0091354002en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/33899-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 91354002zh_TW
dc.description (描述) 92zh_TW
dc.description.abstract (摘要) 當研究者想要了解態度量表中不同組間之態度分數是否有所差異時,一個常見的分析方法為變異數分析。然而,變異數分析需要建立在資料服從常態分配之假設上,態度量表之資料類型卻很明顯地不符合此一假設。而非針對連續型資料所推導出來的 統計量,應該是較適合處理序列或是等距尺度等非常態資料之檢定方法。本研究主要之目的即為探討利用 統計量以及利用變異數分析兩者所作出之檢定結果差異為何。過去相關研究皆假設態度量表背後存在一連續潛在變數,本研究則直接由間斷型分配出發。在公式推導上,我們發現 統計量與變異數分析中之 統計量存在一對一對應之關係。雖然兩統計量近似之分配不同,但兩統計量所對應之p值卻始終非常接近。若以0.05為顯著水準, 統計量與 統計量之檢定結果幾乎完全相同。當需要檢定不同組間在多題上之看法是否具有差異時,我們比較了將屬於同一主題之各題分數加總,然後依照單變量變異數分析之方法進行檢定,以及多變量變異數分析法、羅吉斯迴歸分析法等三種方法。根據我們的模擬結果,若各組在各題之態度皆很類似,則利用ANOVA進行分析可以得到較低的型一誤差;若各組在各題之態度不太一致,且有左右偏分配互相抵銷的情形,則利用MANOVA或是羅吉斯迴歸分析法才能夠維持住很高的檢定力。zh_TW
dc.description.abstract (摘要) In social science literature, we frequently found that ANOVA techniques were utilized to analyze Likert-type response data. However, one of the three basic assumptions behind ANOVA is that response variable is normally distributed, and Likert-type data apparently do not share this property. In this study, we compare the performance between statistic associated with ANOVA with Mantel- Haenszel statistic, a statistic aimed at handling categorical data. We found that statistic and statistic have one-to-one relationship. Although these two statistics can be approximated by distribution and Chi-square distribution respectively, their p values are quite close to each other. At the significant level of 0.05, and statistics almost have the same testing results. In addition to analyzing a single Likert-type response question, we would also like to analyze a set of Likert-type response questions that probably represent a specific concept. We propose two alternatives here. The first one is MANOVA, and the second one is logistic regression analysis. According to the simulation results, using the ANOVA approach is slightly better in terms of the type I error rate if the responses have similar structures among questions. On the other hand, using MANOVA or logistic regression analysis would maintain higher power whenever the responses have different structures among questions.en_US
dc.description.tableofcontents 第一章 研究動機 . 1
第二章 文獻回顧 . 4
第一節 變異數分析與 統計量 ... 4
第二節 卡方檢定與 統計量 ... 8
第三節 多變量變異數分析與羅吉斯迴歸分析 ...17
第三章 無控制變數存在時之檢定 ...25
第一節 無控制變數存在時, 統計量以及 統計量之關係 ...26
第二節 無控制變數存在時, 統計量以及 統計量之檢定力比較 ...30
第三節 兩種檢定結果無明顯差異之原因探討 ...38
第四章 控制變數存在時之檢定 ...40
第一節 當控制變數存在時, 統計量以及 統計量之關係 ...40
第二節 變異數分析與 檢定之模擬結果比較 ...48
第五章 檢定組間在多題上之差異方法的模擬比較 ...66
第六章 結論 ...72
參考文獻 ...74
附錄一 ...75
附錄二 ...81
zh_TW
dc.format.extent 56727 bytes-
dc.format.extent 150581 bytes-
dc.format.extent 114525 bytes-
dc.format.extent 129202 bytes-
dc.format.extent 491944 bytes-
dc.format.extent 395448 bytes-
dc.format.extent 1040597 bytes-
dc.format.extent 359682 bytes-
dc.format.extent 140954 bytes-
dc.format.extent 117479 bytes-
dc.format.extent 171576 bytes-
dc.format.extent 85558 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0091354002en_US
dc.subject (關鍵詞) 態度量表zh_TW
dc.subject (關鍵詞) 李克特zh_TW
dc.subject (關鍵詞) 變異數分析zh_TW
dc.subject (關鍵詞) Q統計量zh_TW
dc.subject (關鍵詞) Attitude measurementen_US
dc.subject (關鍵詞) Likerten_US
dc.subject (關鍵詞) ANOVAen_US
dc.subject (關鍵詞) Q statisticen_US
dc.title (題名) 態度量表中檢定組間差異之統計方法zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1. Box, G. E. P., Hunter, W. G., and Hunter J. S. (1978). Statistics for Experimenters. Wiley, New York.zh_TW
dc.relation.reference (參考文獻) 2. Cochran, W. (1954). Some Methods of Strengthening the Common Test. Biometrics, 10, 417-451.zh_TW
dc.relation.reference (參考文獻) 3. Fisher, R. A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7 (part 2), 179-188.zh_TW
dc.relation.reference (參考文獻) 4. Gregoire, T. G., and Driver, B. L. (1987). Analysis of ordinal data to detect population differences. Psychological Bulletin, 101, 159-165.zh_TW
dc.relation.reference (參考文獻) 5. Kim, D., and Agresti, A. (1997). Nearly exact tests of conditional independence and marginal homogeneity for sparse contingency tables. Computational Statistics & Data Analysis, 24, 89-104.zh_TW
dc.relation.reference (參考文獻) 6. Koch, G. G. (1969). A Useful Lemma for Proving the Equality of Two Matrices with Applications to Least Squares Type Quadratic Forms. Journal of the American Statistical Association, 64, 969-970.zh_TW
dc.relation.reference (參考文獻) 7. Koch, G. G., and Bhapkar, V. P. (1982). Chi-square tests. Encyclopedia of Statistical Sciences, N. L. Johnson and S. Kotz (eds), 442-457. Wiley, New York.zh_TW
dc.relation.reference (參考文獻) 8. Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology, New York.zh_TW
dc.relation.reference (參考文獻) 9. Mantel, N., and Haenszel, W. (1959). Statistical Aspects of the Analysis of Data From Retrospective Studies of Disease. Journal of the National Cancer Institute, 22, 719-748.zh_TW
dc.relation.reference (參考文獻) 10. Press, S. J., and Wilson, S. (1978). Choosing Between Logistic Regression and Discriminant Analysis. Journal of the American Statistical Association, 73, 699-705.zh_TW
dc.relation.reference (參考文獻) 11. Somes, G. W. (1986). The Generalized Mantel-Haenszel Statistic. The American Statistician, 40, 106-108.zh_TW