學術產出-學位論文

題名 海外可轉換公司債的評價-考慮平均重設條款、信用風險及利率期間結構
作者 張世東
CHANG SHIH TUNG
貢獻者 陳威光<br>江彌修
<br>
張世東
CHANG SHIH TUNG
關鍵詞 海外可轉換公司債
最小平方法蒙地卡羅模擬
Hull-White利率三元樹
信用簡約模型
平均重設條款
European Convertible Bond
Least Square Monte Carlo Simulation
Hull-White Interest-Rate Tree
Credit Risk Induce Form
Average Reset Contract
日期 2002
上傳時間 17-九月-2009 18:59:13 (UTC+8)
摘要 影響海外可轉換公司債的因素有許多,包括股價、國內利率、國外利率、匯率,若將時間變數也加入計算,其變動因子高達5階,這種「高維度」的問題已非有限差分法或樹狀方法能處理;且海外可轉債常附有平均式條款、回顧式條款等「路徑相依」性質的選擇權,更是格狀結構數值法(Lattice)難以處理的問題。若使用蒙地卡羅模擬,雖然可以處理高維度及路徑相依的問題,但遇到美式契約時,則會有無法判斷轉換時點的問題,更遑論還必須處理的重設條款或界限型契約。
本論文研究海外可轉換公司債的評價,特點是可以處理其契約中各種可能的複雜條款,本文所使用的最小平方蒙地卡羅模擬,由Longstaff and Schwartz [2000]提出,對於美式契約、路徑相依及高維度問題皆可處理。本文並以Hull and White利率三元樹配適公司債利率符合市場利率期間結構。此外本研究加入海外可轉換公司債評價中最重要的信用風險因素,過去可轉債文獻理論價格大都高於實際市價,這是由於忽略了公司的信用風險溢酬,本文所使用的信用風險模型是由Lando [1998]所提出,特點是不以信用等級作為考量,探討公司特性與所屬產業,並考慮總體因素對違約機率的影響,從市場價格中估計違約密度參數,進而求得信用價差。
本研究對仁寶電腦在2002年所發的ECB做實證研究,比較LSM理論價格與實際市價之誤差,及對Takahashi[2001]所提出之歐式模型做比較,發現本文提出模型之評價結果相當不錯,誤差僅有0.83%;此外並對建華金控2002所發之ECB,探討各種複雜新奇條款對ECB價格的影響,發現市場上嚴重低估了重設條款所提高的價值,而實際市價卻十分接近僅含賣回條款的理論價格。
參考文獻 參考文獻
1. Brennan, M., and E. Schwartz. “Convertible Bonds: Valuation and Optimal Strategies for Call and Conversion.” Journal of Finance, 32(1977), pp. 1699-1715.
2. ——. “Analyzing Convertible Bonds.” Journal of Financial and Quantitative Analysis, 15(1980), pp. 907-929.
3. Hull, J. and A. White. “Using Hull-White Interest Rate Trees. “ Journal of Derivatives, Spring 1996, pp. 27-36.
4. Hung, M. W. and J. Y. Wang. ”Pricing Convertible Bonds Subject to Default Risk.” Journal of Derivative, Winter 2002, pp. 75-87.
5. Janosi, T., Jarrow, R. and Y. Yildirim. “Estimating Expected Losses and Liquidity Discounts Implicit in Debt Prices.” Journal of Risk, Vol.5, No. 1, Fall 2002
6. Jarrow, R. A. and F. Yu. ”Counter party risk and defaultable securities.” Journal of Finance. OCT. 2001, vol. LVI, No. 5,1765-1799.
7. Lando, D.“On Cox processes and Credit Risky Securities.”Review of Derivatives Research. 1998, 2, 99-120.
8. Longstaff, F. A. and E. S. Schwartz. “Valuing American Options by Simulation: A simple Least-Squares Approach.” The Review of Financial Studies. Spring 2001 Vol. 14, No. 1, pp. 113-147.
9. Moreno, M. and J. F. Navas. “On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives.” working paper, Pompeu Fabra University. March 2001.
10. Takahashi, A., Kobayashi T., and N. Nakagawa. ”Pricing Convertible Bonds with Default Risk.” The journal of Fixed income, December 2001, pp. 20-29.
11. Tavella, D. “Quantitative Method in derivatives pricing-An Introduction to Computational Finance.” Published by John Wiley & Sons, Inc. 2002, pp. 188-206.
12. Tsitsikilis, J. N. and B. Van Roy. “Regression Methods for Pricing Complex American-Style Options.” working paper, Stanford University, August 2000.
13. Tsiveriotis, K., and C. Fernandes. ”Valuing Convertible Bonds with Credit Risk.” The journal of fixed income, September 1998, pp. 95-102.
14. Yigitbasioglu, A. B. “Pricing Convertible Bonds with Interest Rate, Equity, Credit and FX Risk.” ISMA Centre Discussion Papers In Finance, 2001,14.
描述 碩士
國立政治大學
金融研究所
90352002
91
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0090352002
資料類型 thesis
dc.contributor.advisor 陳威光<br>江彌修zh_TW
dc.contributor.advisor <br>en_US
dc.contributor.author (作者) 張世東zh_TW
dc.contributor.author (作者) CHANG SHIH TUNGen_US
dc.creator (作者) 張世東zh_TW
dc.creator (作者) CHANG SHIH TUNGen_US
dc.date (日期) 2002en_US
dc.date.accessioned 17-九月-2009 18:59:13 (UTC+8)-
dc.date.available 17-九月-2009 18:59:13 (UTC+8)-
dc.date.issued (上傳時間) 17-九月-2009 18:59:13 (UTC+8)-
dc.identifier (其他 識別碼) G0090352002en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/33974-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 金融研究所zh_TW
dc.description (描述) 90352002zh_TW
dc.description (描述) 91zh_TW
dc.description.abstract (摘要) 影響海外可轉換公司債的因素有許多,包括股價、國內利率、國外利率、匯率,若將時間變數也加入計算,其變動因子高達5階,這種「高維度」的問題已非有限差分法或樹狀方法能處理;且海外可轉債常附有平均式條款、回顧式條款等「路徑相依」性質的選擇權,更是格狀結構數值法(Lattice)難以處理的問題。若使用蒙地卡羅模擬,雖然可以處理高維度及路徑相依的問題,但遇到美式契約時,則會有無法判斷轉換時點的問題,更遑論還必須處理的重設條款或界限型契約。
本論文研究海外可轉換公司債的評價,特點是可以處理其契約中各種可能的複雜條款,本文所使用的最小平方蒙地卡羅模擬,由Longstaff and Schwartz [2000]提出,對於美式契約、路徑相依及高維度問題皆可處理。本文並以Hull and White利率三元樹配適公司債利率符合市場利率期間結構。此外本研究加入海外可轉換公司債評價中最重要的信用風險因素,過去可轉債文獻理論價格大都高於實際市價,這是由於忽略了公司的信用風險溢酬,本文所使用的信用風險模型是由Lando [1998]所提出,特點是不以信用等級作為考量,探討公司特性與所屬產業,並考慮總體因素對違約機率的影響,從市場價格中估計違約密度參數,進而求得信用價差。
本研究對仁寶電腦在2002年所發的ECB做實證研究,比較LSM理論價格與實際市價之誤差,及對Takahashi[2001]所提出之歐式模型做比較,發現本文提出模型之評價結果相當不錯,誤差僅有0.83%;此外並對建華金控2002所發之ECB,探討各種複雜新奇條款對ECB價格的影響,發現市場上嚴重低估了重設條款所提高的價值,而實際市價卻十分接近僅含賣回條款的理論價格。
zh_TW
dc.description.tableofcontents 摘要………………………………………………………………….…..…..…1
1. 緒論…………………………………………………………….……….3
2. 最小平方法蒙地卡羅模擬…………………………….….……………6
2.1 理論架構……………………………………………………..…6
2.2 LSM效率改進研究………...………………………….….……9
3. 海外可轉債評價模型設定……………………………….....………...13
3.1 考慮股價、利率、匯率的可轉債模型………………………13
3.2 配適利率期間結構……………………………….….……..…17
3.3 信用風險模型……………………………………………..…..20
4. 海外可轉債評價實證…………….………………………...…..…..…25
4.1評價簡例……………………………………………………....….25
4.2仁寶ECB實證分析 …………………..…………………..….….34
4.3新奇條款的海外可轉債實證分析……………………………….39
5. 結論………………………………………………………....…..…..…45
附錄………………………………………………………………....……..….46
參考文獻…………………………………………………………....…..…….48
zh_TW
dc.format.extent 9114 bytes-
dc.format.extent 10809 bytes-
dc.format.extent 11347 bytes-
dc.format.extent 10002 bytes-
dc.format.extent 16139 bytes-
dc.format.extent 88076 bytes-
dc.format.extent 124593 bytes-
dc.format.extent 234793 bytes-
dc.format.extent 11070 bytes-
dc.format.extent 38248 bytes-
dc.format.extent 12408 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0090352002en_US
dc.subject (關鍵詞) 海外可轉換公司債zh_TW
dc.subject (關鍵詞) 最小平方法蒙地卡羅模擬zh_TW
dc.subject (關鍵詞) Hull-White利率三元樹zh_TW
dc.subject (關鍵詞) 信用簡約模型zh_TW
dc.subject (關鍵詞) 平均重設條款zh_TW
dc.subject (關鍵詞) European Convertible Bonden_US
dc.subject (關鍵詞) Least Square Monte Carlo Simulationen_US
dc.subject (關鍵詞) Hull-White Interest-Rate Treeen_US
dc.subject (關鍵詞) Credit Risk Induce Formen_US
dc.subject (關鍵詞) Average Reset Contracten_US
dc.title (題名) 海外可轉換公司債的評價-考慮平均重設條款、信用風險及利率期間結構zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 參考文獻zh_TW
dc.relation.reference (參考文獻) 1. Brennan, M., and E. Schwartz. “Convertible Bonds: Valuation and Optimal Strategies for Call and Conversion.” Journal of Finance, 32(1977), pp. 1699-1715.zh_TW
dc.relation.reference (參考文獻) 2. ——. “Analyzing Convertible Bonds.” Journal of Financial and Quantitative Analysis, 15(1980), pp. 907-929.zh_TW
dc.relation.reference (參考文獻) 3. Hull, J. and A. White. “Using Hull-White Interest Rate Trees. “ Journal of Derivatives, Spring 1996, pp. 27-36.zh_TW
dc.relation.reference (參考文獻) 4. Hung, M. W. and J. Y. Wang. ”Pricing Convertible Bonds Subject to Default Risk.” Journal of Derivative, Winter 2002, pp. 75-87.zh_TW
dc.relation.reference (參考文獻) 5. Janosi, T., Jarrow, R. and Y. Yildirim. “Estimating Expected Losses and Liquidity Discounts Implicit in Debt Prices.” Journal of Risk, Vol.5, No. 1, Fall 2002zh_TW
dc.relation.reference (參考文獻) 6. Jarrow, R. A. and F. Yu. ”Counter party risk and defaultable securities.” Journal of Finance. OCT. 2001, vol. LVI, No. 5,1765-1799.zh_TW
dc.relation.reference (參考文獻) 7. Lando, D.“On Cox processes and Credit Risky Securities.”Review of Derivatives Research. 1998, 2, 99-120.zh_TW
dc.relation.reference (參考文獻) 8. Longstaff, F. A. and E. S. Schwartz. “Valuing American Options by Simulation: A simple Least-Squares Approach.” The Review of Financial Studies. Spring 2001 Vol. 14, No. 1, pp. 113-147.zh_TW
dc.relation.reference (參考文獻) 9. Moreno, M. and J. F. Navas. “On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives.” working paper, Pompeu Fabra University. March 2001.zh_TW
dc.relation.reference (參考文獻) 10. Takahashi, A., Kobayashi T., and N. Nakagawa. ”Pricing Convertible Bonds with Default Risk.” The journal of Fixed income, December 2001, pp. 20-29.zh_TW
dc.relation.reference (參考文獻) 11. Tavella, D. “Quantitative Method in derivatives pricing-An Introduction to Computational Finance.” Published by John Wiley & Sons, Inc. 2002, pp. 188-206.zh_TW
dc.relation.reference (參考文獻) 12. Tsitsikilis, J. N. and B. Van Roy. “Regression Methods for Pricing Complex American-Style Options.” working paper, Stanford University, August 2000.zh_TW
dc.relation.reference (參考文獻) 13. Tsiveriotis, K., and C. Fernandes. ”Valuing Convertible Bonds with Credit Risk.” The journal of fixed income, September 1998, pp. 95-102.zh_TW
dc.relation.reference (參考文獻) 14. Yigitbasioglu, A. B. “Pricing Convertible Bonds with Interest Rate, Equity, Credit and FX Risk.” ISMA Centre Discussion Papers In Finance, 2001,14.zh_TW