學術產出-學位論文

題名 利用最小平方蒙地卡羅模擬法評價美式信用違約交換選擇權
Pricing American credit default swap options with least-square monte carlo simulation
作者 葉尚鑫
Ye, Shang Shin
貢獻者 廖四郎
Liao, Szu Lang
葉尚鑫
Ye, Shang Shin
關鍵詞 信用違約交換
信用違約交換選擇權
單期信用違約交換率
最小平方蒙地卡羅法
CDS
CDS option
one-period CDS spread
least-squares Monte Carlo simulation
LIBOR market model
日期 2007
上傳時間 17-九月-2009 19:04:45 (UTC+8)
摘要 歐式信用違約交換選擇權通常都以短天期較富流動信,造成這樣情形的原因很可能是因為長天期的信用違約交換選擇權必須承擔標的公司的倒閉風險。美式信用違約交換選擇權讓持有者可以在選擇權到期以前履約,這使得持有者可以只注意信用違約交換溢酬的變動,而不必擔心標的公司的倒閉風險。在這篇論文當中,我們結合最小平方法以及單期信用違約溢酬模型評價美式信用違約交換選擇權,其中單期信用違約溢酬模型是由布瑞格在2004年所發表的模型。本篇論文評價方法的最大優點在於此方法類似於利率理論的市場模型,因此我們可以利用類似的想法評價任何與信用違約交換合約相關的信用衍生性商品。
The most liquid European CDS options are usually of short maturities. This may result from that options with longer maturity have to bear more default risk of the reference company. American CDS options allow the holders to exercise options before option matures so that they can focus on spread movements without worrying about default risk. In this paper, we price American CDS options with one-period CDS spread model presented by Brigo (2004). The primary advantage of this model is that it is similar to LIBOR market model in interest rate theory. Therefore, path-dependent CDS-related products can be easily priced with familiar ideas.
參考文獻 1.Brigo, D., and Alfonsi, A. (2003), “Credit Default Swaps
Calibration and Option Pricing with the SSRD
Stochastic Intensity and Interest-Rate Model,”
http://www.damianobrigo.it
2.Brigo, D., (2005),”Constant Maturity CDS valuation with
market models,” Risk Magazine, june issue.
3.Brigo, D., Alfonsi, A., (2005) “Credit Default Swap
Calibration and Derivatives Pricing with the SSRD
Stochastic Intensity Model,” Finance and Stochastic,
Vol. 9, N. 1.
4.Ben A. H., Brigo, D., and Errais, E., (2006), “A Dynamic
Programming Approach for Pricing CDS and CDS Options,”
working paper.
5.Hull, J., and White, A., (2003), “The Valuation of
Credit Default Swap Options,” Journal of Derivatives,
Vol.10, No.3,,1:40-50.
6.Alan L. Tucker; Jason Z. Wei,(2005), Credit Default
Swaptions. Journal of Fixed Incone, June.
7.Brigo, D., and Morini, M., “CDS Market Formulas and
Models,” In: Proceedings of the 18th Annual Warwick
Options Conference, September 30, 2005, Warwick, UK.
8.Longstaff F. A. and E. S. Schwartz (2001) “Valuing
American Options by Simulation: A Simple Least-Squares
Approach,” The Review of Financial Studies, Vol.14,
No.1, 113-147.
9.Hull, J. C. and A. White, “Valuing credit default swaps
I: No counterparty default risk,”Journal of Derivatives,
vol. 8, no. 1 (Fall 2000), pp 29-40.
10.Krekel, M. and Wenzel, J., (2006), “A unified approach
to Credit Default Swaption and Constant Maturity Credit
Default Swap valuation,” Berichte des Fraunhofer ITWM,
Nr. 96.
11.Steven E. Shreve,(2003), “Stochastic Calculus for
Finance II: Continuous-Time Models”, Springer Finance.
12.Brigo, D. and Mercurio, F., (2006), ” Interest rate
models-theory and practice,” Springer Finance.
描述 碩士
國立政治大學
金融研究所
94352016
96
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0094352016
資料類型 thesis
dc.contributor.advisor 廖四郎zh_TW
dc.contributor.advisor Liao, Szu Langen_US
dc.contributor.author (作者) 葉尚鑫zh_TW
dc.contributor.author (作者) Ye, Shang Shinen_US
dc.creator (作者) 葉尚鑫zh_TW
dc.creator (作者) Ye, Shang Shinen_US
dc.date (日期) 2007en_US
dc.date.accessioned 17-九月-2009 19:04:45 (UTC+8)-
dc.date.available 17-九月-2009 19:04:45 (UTC+8)-
dc.date.issued (上傳時間) 17-九月-2009 19:04:45 (UTC+8)-
dc.identifier (其他 識別碼) G0094352016en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/34006-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 金融研究所zh_TW
dc.description (描述) 94352016zh_TW
dc.description (描述) 96zh_TW
dc.description.abstract (摘要) 歐式信用違約交換選擇權通常都以短天期較富流動信,造成這樣情形的原因很可能是因為長天期的信用違約交換選擇權必須承擔標的公司的倒閉風險。美式信用違約交換選擇權讓持有者可以在選擇權到期以前履約,這使得持有者可以只注意信用違約交換溢酬的變動,而不必擔心標的公司的倒閉風險。在這篇論文當中,我們結合最小平方法以及單期信用違約溢酬模型評價美式信用違約交換選擇權,其中單期信用違約溢酬模型是由布瑞格在2004年所發表的模型。本篇論文評價方法的最大優點在於此方法類似於利率理論的市場模型,因此我們可以利用類似的想法評價任何與信用違約交換合約相關的信用衍生性商品。zh_TW
dc.description.abstract (摘要) The most liquid European CDS options are usually of short maturities. This may result from that options with longer maturity have to bear more default risk of the reference company. American CDS options allow the holders to exercise options before option matures so that they can focus on spread movements without worrying about default risk. In this paper, we price American CDS options with one-period CDS spread model presented by Brigo (2004). The primary advantage of this model is that it is similar to LIBOR market model in interest rate theory. Therefore, path-dependent CDS-related products can be easily priced with familiar ideas.en_US
dc.description.tableofcontents I. Introduction.....................................1
II. Literature Review...............................4
2.1. Valuation models for credit default swaps......4
2.2. Valuation models for European CDS options......7
2.2.1. Hull and White (2002)........................7
2.2.2. Brigo (2004).................................9
2.3. Valuation method for American CDS options.....11
III. Valuation Framework for CDS options...........13
3.1. Dynamics of one-period forward CDS spreads....14
3.2. Valuation framework for European CDS options..19
3.3. Valuation framework for American CDS options..21
under least-squares Monte Carlo simulation....26
IV. Numerical Examples.............................26
4.1. A comparison with the valuation models by
Brigo (2004) and Hull and White (2002)........30
4.2. A comparison among European, Bermudan and
American CDS options..........................32
4.3. Sensitivity analysis-changes in market quotes
for CDS contracts.............................37
4.4. Sensitivity analysis-changes in volatilities of
one-period CDS spreads........................41
V. Conclusion......................................45
Reference.............................................47
Appendix..............................................49
zh_TW
dc.format.extent 16587 bytes-
dc.format.extent 18532 bytes-
dc.format.extent 155761 bytes-
dc.format.extent 145540 bytes-
dc.format.extent 310700 bytes-
dc.format.extent 404217 bytes-
dc.format.extent 319267 bytes-
dc.format.extent 96247 bytes-
dc.format.extent 142763 bytes-
dc.format.extent 223930 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0094352016en_US
dc.subject (關鍵詞) 信用違約交換zh_TW
dc.subject (關鍵詞) 信用違約交換選擇權zh_TW
dc.subject (關鍵詞) 單期信用違約交換率zh_TW
dc.subject (關鍵詞) 最小平方蒙地卡羅法zh_TW
dc.subject (關鍵詞) CDSen_US
dc.subject (關鍵詞) CDS optionen_US
dc.subject (關鍵詞) one-period CDS spreaden_US
dc.subject (關鍵詞) least-squares Monte Carlo simulationen_US
dc.subject (關鍵詞) LIBOR market modelen_US
dc.title (題名) 利用最小平方蒙地卡羅模擬法評價美式信用違約交換選擇權zh_TW
dc.title (題名) Pricing American credit default swap options with least-square monte carlo simulationen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1.Brigo, D., and Alfonsi, A. (2003), “Credit Default Swapszh_TW
dc.relation.reference (參考文獻) Calibration and Option Pricing with the SSRDzh_TW
dc.relation.reference (參考文獻) Stochastic Intensity and Interest-Rate Model,”zh_TW
dc.relation.reference (參考文獻) http://www.damianobrigo.itzh_TW
dc.relation.reference (參考文獻) 2.Brigo, D., (2005),”Constant Maturity CDS valuation withzh_TW
dc.relation.reference (參考文獻) market models,” Risk Magazine, june issue.zh_TW
dc.relation.reference (參考文獻) 3.Brigo, D., Alfonsi, A., (2005) “Credit Default Swapzh_TW
dc.relation.reference (參考文獻) Calibration and Derivatives Pricing with the SSRDzh_TW
dc.relation.reference (參考文獻) Stochastic Intensity Model,” Finance and Stochastic,zh_TW
dc.relation.reference (參考文獻) Vol. 9, N. 1.zh_TW
dc.relation.reference (參考文獻) 4.Ben A. H., Brigo, D., and Errais, E., (2006), “A Dynamiczh_TW
dc.relation.reference (參考文獻) Programming Approach for Pricing CDS and CDS Options,”zh_TW
dc.relation.reference (參考文獻) working paper.zh_TW
dc.relation.reference (參考文獻) 5.Hull, J., and White, A., (2003), “The Valuation ofzh_TW
dc.relation.reference (參考文獻) Credit Default Swap Options,” Journal of Derivatives,zh_TW
dc.relation.reference (參考文獻) Vol.10, No.3,,1:40-50.zh_TW
dc.relation.reference (參考文獻) 6.Alan L. Tucker; Jason Z. Wei,(2005), Credit Defaultzh_TW
dc.relation.reference (參考文獻) Swaptions. Journal of Fixed Incone, June.zh_TW
dc.relation.reference (參考文獻) 7.Brigo, D., and Morini, M., “CDS Market Formulas andzh_TW
dc.relation.reference (參考文獻) Models,” In: Proceedings of the 18th Annual Warwickzh_TW
dc.relation.reference (參考文獻) Options Conference, September 30, 2005, Warwick, UK.zh_TW
dc.relation.reference (參考文獻) 8.Longstaff F. A. and E. S. Schwartz (2001) “Valuingzh_TW
dc.relation.reference (參考文獻) American Options by Simulation: A Simple Least-Squareszh_TW
dc.relation.reference (參考文獻) Approach,” The Review of Financial Studies, Vol.14,zh_TW
dc.relation.reference (參考文獻) No.1, 113-147.zh_TW
dc.relation.reference (參考文獻) 9.Hull, J. C. and A. White, “Valuing credit default swapszh_TW
dc.relation.reference (參考文獻) I: No counterparty default risk,”Journal of Derivatives,zh_TW
dc.relation.reference (參考文獻) vol. 8, no. 1 (Fall 2000), pp 29-40.zh_TW
dc.relation.reference (參考文獻) 10.Krekel, M. and Wenzel, J., (2006), “A unified approachzh_TW
dc.relation.reference (參考文獻) to Credit Default Swaption and Constant Maturity Creditzh_TW
dc.relation.reference (參考文獻) Default Swap valuation,” Berichte des Fraunhofer ITWM,zh_TW
dc.relation.reference (參考文獻) Nr. 96.zh_TW
dc.relation.reference (參考文獻) 11.Steven E. Shreve,(2003), “Stochastic Calculus forzh_TW
dc.relation.reference (參考文獻) Finance II: Continuous-Time Models”, Springer Finance.zh_TW
dc.relation.reference (參考文獻) 12.Brigo, D. and Mercurio, F., (2006), ” Interest ratezh_TW
dc.relation.reference (參考文獻) models-theory and practice,” Springer Finance.zh_TW