Publications-Theses

題名 市場模型下利率連動債券評價 — 以逆浮動、雪球型、及每日區間型為例
Callable LIBOR Exotics Valuation in Lognormal Forward LIBOR Model, Cases of Callable Inverse Floater, Callable Cumulative Inverse Floater, and Callable Daily Range Accrual Note
作者 趙子賢
Chao, Tzu-Hsien
貢獻者 廖四郎
趙子賢
Chao, Tzu-Hsien
關鍵詞 結構債券
市場模型
最小平方蒙地卡羅法
Structured Notes
Lognormal Forward LIBOR Model
Least-squares Monte Carlo Simulation
日期 2005
上傳時間 17-Sep-2009 19:06:58 (UTC+8)
摘要 國內結構債市場業已蓬勃發展,市場模型亦相當適合結構債評價。本文在市場模型下,因市場模型不具馬可夫性質,運用最小平方蒙地卡羅法針對三連結標的為LIBOR的結構債進行評價。
The market of the structured notes has been blossoming. The lognormal forward LIBOR model is more suitable for the valuation of structured notes than do the traditional interest rate models. In this article, we perform three case studies of the valuation of the structured notes linked to LIBOR in lognormal forward LIOBR model. It is easier to implement the lognormal forward LIBOR model by Monte Carlo simulation due to the non-Markovian property. Therefore, the least-squares Monte Carlo approach is used to deal with the callable feature of the structured notes in our case studies.
參考文獻 陳松男,金融工程學,華泰書局,民國九十一年一月初版。
張欽堯,利率連動債券之評價與分析—BGM模型,政大金融研究所碩士論文,民國九十三年六月。
Black, F. and Karasinski, P. (1991) Bond and Option Pricing When Short Rates Are Lognormal, Financial Analysts Journal, Vol. 47, Iss. 4; pp. 52-59.
Brace, A., Gatarek, D., and Musiela, M. (1997) The Market Model of Interest Rate Dynamics, Mathematical Finance, Vol. 7, Iss. 2, pp. 127-155.
Brigo, D. and Mercurio, F. (2001) Interest Rate Models: Theory and Practice, Springer-Verlag, Berlin.
Cox, J.C., Ingersoll, J.E., and Ross, S.A. (1985) A Theory of the Term Structure of Interest Rates, Econometrica, Vol. 53, No. 2, pp. 385-408.
Das, S. (2001) Structured Products and Hybrid Securities, John Wiley & Sons Ltd., Singapore.
Heath, D., Jarrow, R., and Morton, A. (1992) Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation, Econometrica, Vol. 60, No. 1, pp. 77-105.
Ho; T.S.Y. and Lee, S.-B. (1986) Term Structure Movements and Pricing Interest Rate Contingent Claims, Journal of Finance, Vol. 41, No. 5, pp. 1011-1029.
Hull, J. and White, A. (1990) Pricing Interest-Rate-Derivative Securities, The Review of Financial Studies, Vol. 3, No. 4, pp. 573-592.
Jamshidian, F. (1997) LIBOR and Swap Market Models and Measures, Finance and Stochastics, Vol. 1, Iss. 4. pp. 293-330.
Longstaff, F. and Schwartz, E. (2001) Valuing American Options by Simulation: A Simple Least-Squares Approach, The Review of Financial Studies, Vol. 14, No.1, pp. 113-147.
Miltersen, K.R. Sandmann, K. and Sondermann D. (1997) Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates, Journal of Finance, Vol. 52, No. 1, pp. 409-430.
Piterbarg, V. (January 25, 2003a) Computing Deltas of Callable LIBOR Exotics in Forward LIBOR Models, Working Paper, Barclays Capital.
Piterbarg, V. (June 25, 2003b) A Practitioner’s Guide to Pricing and Hedging Callable LIBOR Exotics in Forward LIBOR Models, Working Paper, Barclays Capital.
Rebonato, R. (1999) Volatility and Correlation: In the Pricing of Equity, FX and Interest-Rate Options, John Wiley & Sons Ltd., West Sussex.
Shreve, S. (2004) Stochastic Calculus for Finance II, Springer-Verlag, New York.
Stapleton, D. and Stapleton, R. (May 28, 2003) The LIBOR Market Model: A Recombining Binomial Tree Methodology, Working Paper.
Svoboda, S. (2004) Interest Rate Modelling, Palgrave Macmillan, New York.
Vasicek, O. (1977) An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, Vol. 5, pp. 177-188.
Zagst, R. (2002) Interest Rate Management, Springer-Verlag, Berlin.
描述 碩士
國立政治大學
金融研究所
92352010
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0923520101
資料類型 thesis
dc.contributor.advisor 廖四郎zh_TW
dc.contributor.author (Authors) 趙子賢zh_TW
dc.contributor.author (Authors) Chao, Tzu-Hsienen_US
dc.creator (作者) 趙子賢zh_TW
dc.creator (作者) Chao, Tzu-Hsienen_US
dc.date (日期) 2005en_US
dc.date.accessioned 17-Sep-2009 19:06:58 (UTC+8)-
dc.date.available 17-Sep-2009 19:06:58 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 19:06:58 (UTC+8)-
dc.identifier (Other Identifiers) G0923520101en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/34021-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 金融研究所zh_TW
dc.description (描述) 92352010zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 國內結構債市場業已蓬勃發展,市場模型亦相當適合結構債評價。本文在市場模型下,因市場模型不具馬可夫性質,運用最小平方蒙地卡羅法針對三連結標的為LIBOR的結構債進行評價。zh_TW
dc.description.abstract (摘要) The market of the structured notes has been blossoming. The lognormal forward LIBOR model is more suitable for the valuation of structured notes than do the traditional interest rate models. In this article, we perform three case studies of the valuation of the structured notes linked to LIBOR in lognormal forward LIOBR model. It is easier to implement the lognormal forward LIBOR model by Monte Carlo simulation due to the non-Markovian property. Therefore, the least-squares Monte Carlo approach is used to deal with the callable feature of the structured notes in our case studies.en_US
dc.description.tableofcontents 1 Introduction
1.1 Motive 1
1.2 Objective 1
1.3 Structure 1
2 Callable LIBOR Exotics and Interest Rate Models
2.1 Callable LIBOR Exotics 3
2.1.1 Definition 4
2.1.2 Examples 6
2.2 Interest Rate Models 8
2.2.1 Short Rate Models 9
2.2.2 The Heath, Jarrow, and Morton (HJM) Model 13
2.2.3 The Market Models 15
2.3 Choosing the Lognormal Forward LIBOR Model (LFM) 16
3 Lognormal Forward LIBOR Model
3.1 The LFM 17
3.1.1 The Model Set-up 17
3.1.2 Pricing Derivatives, Example of Cap (Caplet) 23
3.1.3 The Dynamics of LFM under Different Numeraires 25
3.2 The Callable Feature 30
The Least-squares Approach 30
3.3 Model Calibration 37
Instantaneous Volatility Calibration 38
4 Case Study
4.1 Callable Inverse Floater Note 44
4.2 Callable Cumulative Inverse Floater 55
4.3 Callable Daily Range Accrual Note 59
5 Conclusion
Appendix 66
References 67
zh_TW
dc.format.extent 46006 bytes-
dc.format.extent 91376 bytes-
dc.format.extent 46941 bytes-
dc.format.extent 87471 bytes-
dc.format.extent 79162 bytes-
dc.format.extent 285430 bytes-
dc.format.extent 595635 bytes-
dc.format.extent 410816 bytes-
dc.format.extent 60053 bytes-
dc.format.extent 97364 bytes-
dc.format.extent 96607 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0923520101en_US
dc.subject (關鍵詞) 結構債券zh_TW
dc.subject (關鍵詞) 市場模型zh_TW
dc.subject (關鍵詞) 最小平方蒙地卡羅法zh_TW
dc.subject (關鍵詞) Structured Notesen_US
dc.subject (關鍵詞) Lognormal Forward LIBOR Modelen_US
dc.subject (關鍵詞) Least-squares Monte Carlo Simulationen_US
dc.title (題名) 市場模型下利率連動債券評價 — 以逆浮動、雪球型、及每日區間型為例zh_TW
dc.title (題名) Callable LIBOR Exotics Valuation in Lognormal Forward LIBOR Model, Cases of Callable Inverse Floater, Callable Cumulative Inverse Floater, and Callable Daily Range Accrual Noteen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 陳松男,金融工程學,華泰書局,民國九十一年一月初版。zh_TW
dc.relation.reference (參考文獻) 張欽堯,利率連動債券之評價與分析—BGM模型,政大金融研究所碩士論文,民國九十三年六月。zh_TW
dc.relation.reference (參考文獻) Black, F. and Karasinski, P. (1991) Bond and Option Pricing When Short Rates Are Lognormal, Financial Analysts Journal, Vol. 47, Iss. 4; pp. 52-59.zh_TW
dc.relation.reference (參考文獻) Brace, A., Gatarek, D., and Musiela, M. (1997) The Market Model of Interest Rate Dynamics, Mathematical Finance, Vol. 7, Iss. 2, pp. 127-155.zh_TW
dc.relation.reference (參考文獻) Brigo, D. and Mercurio, F. (2001) Interest Rate Models: Theory and Practice, Springer-Verlag, Berlin.zh_TW
dc.relation.reference (參考文獻) Cox, J.C., Ingersoll, J.E., and Ross, S.A. (1985) A Theory of the Term Structure of Interest Rates, Econometrica, Vol. 53, No. 2, pp. 385-408.zh_TW
dc.relation.reference (參考文獻) Das, S. (2001) Structured Products and Hybrid Securities, John Wiley & Sons Ltd., Singapore.zh_TW
dc.relation.reference (參考文獻) Heath, D., Jarrow, R., and Morton, A. (1992) Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation, Econometrica, Vol. 60, No. 1, pp. 77-105.zh_TW
dc.relation.reference (參考文獻) Ho; T.S.Y. and Lee, S.-B. (1986) Term Structure Movements and Pricing Interest Rate Contingent Claims, Journal of Finance, Vol. 41, No. 5, pp. 1011-1029.zh_TW
dc.relation.reference (參考文獻) Hull, J. and White, A. (1990) Pricing Interest-Rate-Derivative Securities, The Review of Financial Studies, Vol. 3, No. 4, pp. 573-592.zh_TW
dc.relation.reference (參考文獻) Jamshidian, F. (1997) LIBOR and Swap Market Models and Measures, Finance and Stochastics, Vol. 1, Iss. 4. pp. 293-330.zh_TW
dc.relation.reference (參考文獻) Longstaff, F. and Schwartz, E. (2001) Valuing American Options by Simulation: A Simple Least-Squares Approach, The Review of Financial Studies, Vol. 14, No.1, pp. 113-147.zh_TW
dc.relation.reference (參考文獻) Miltersen, K.R. Sandmann, K. and Sondermann D. (1997) Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates, Journal of Finance, Vol. 52, No. 1, pp. 409-430.zh_TW
dc.relation.reference (參考文獻) Piterbarg, V. (January 25, 2003a) Computing Deltas of Callable LIBOR Exotics in Forward LIBOR Models, Working Paper, Barclays Capital.zh_TW
dc.relation.reference (參考文獻) Piterbarg, V. (June 25, 2003b) A Practitioner’s Guide to Pricing and Hedging Callable LIBOR Exotics in Forward LIBOR Models, Working Paper, Barclays Capital.zh_TW
dc.relation.reference (參考文獻) Rebonato, R. (1999) Volatility and Correlation: In the Pricing of Equity, FX and Interest-Rate Options, John Wiley & Sons Ltd., West Sussex.zh_TW
dc.relation.reference (參考文獻) Shreve, S. (2004) Stochastic Calculus for Finance II, Springer-Verlag, New York.zh_TW
dc.relation.reference (參考文獻) Stapleton, D. and Stapleton, R. (May 28, 2003) The LIBOR Market Model: A Recombining Binomial Tree Methodology, Working Paper.zh_TW
dc.relation.reference (參考文獻) Svoboda, S. (2004) Interest Rate Modelling, Palgrave Macmillan, New York.zh_TW
dc.relation.reference (參考文獻) Vasicek, O. (1977) An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, Vol. 5, pp. 177-188.zh_TW
dc.relation.reference (參考文獻) Zagst, R. (2002) Interest Rate Management, Springer-Verlag, Berlin.zh_TW